Innovation Grants

Salk Institute for Biological Studies - Innovation Grants

Innovation Grants

Salk’s Innovation Grants program, launched in 2006 from the forward-thinking minds of then-Board chair Irwin Jacobs and his wife Joan, embodies the vision and spirit of the Institute that bears Jonas Salk’s name. The Innovation Grants Program is designed to fund out-of-the-box ideas that hold significant promise but may not yet have the track record to attract attention from more traditional funding sources.

“When we first started the program, our hope was that it would increase support of the Institute in two key ways,” say the Jacobs. “First, we wanted it to inspire others to support the program. Second, our hope was that as Salk brought in new faculty members those recruits would be able to generate additional grant monies to support their work. So far we have seen significant successes all around so that’s very encouraging.”

The Jacobs’ commitment of $8 million since the start of the Innovation Grants Program helped Salk secure additional philanthropic contributions from the Rose Hills Foundation, James Melcher and April Benasich, Fondation Ipsen, and Elizabeth Keadle. Since then, Salk researchers have gone on to leverage the early results from the Innovation Grants funded research to access more substantial investments from the National Institutes of Health (NIH) BRAIN Initiative, the Keck Foundation and other prominent grant-makers.

Awarded semi-annually by peer review, Salk’s Innovation Grants Program is critical to catalyzing emerging science with the power to redefine the future. Akin to a petri dish for growing and testing new ideas that might otherwise never see the light of a lab, the program has prompted a host of discoveries. The most recent class of recipients are evidence of the continued impact Innovation Grants awards have on Salk research.

2021 Collaboration Grants

Aging is associated with dysfunctional immune responses, but no one knows the initiating events behind these processes. Professor Susan Kaech, Associate Professors Diana Hargreaves and Ye Zheng, and Assistant Professor Jesse Dixon believe epigenetic influences are particularly vulnerable to age and that many of the age-related changes in immune function and inflammation stem from epigenetic dysfunction. They will determine the effects of age on these factors during a viral infection, identify key factors in aging-associated decline in immunity, and facilitate efforts to improve immune response in older patients.

ALS is hallmarked with delayed adult onsets at unpredictable sites followed by devastating and progressive spread. Professors Sam Pfaff and Axel Nimmerjahn, Associate Professor Nicola Allen, and Assistant Professor Eiman Azim believe that disease onset is accelerated or triggered by secondary environmental insults. An understanding of these environmental interactions could lead to avenues that would delay ALS onset so they are investigating how genetic models of ALS react to these environmental insults, which will begin to define how genetic predisposition and secondary environmental events converge to trigger ALS.

2021 Innovation Grants

The Chalasani lab is seeking to understand how animals make decisions. Associate Professor Shrek Chalasani and graduate student Jess Haley will use a novel microscopy system to record the activity of most, if not all, neurons in the C. elegans “brain” as it learns, remembers and makes decisions. They will discover neuronal changes associated with each of these three phenomena (learning, memory and decision-making), providing a framework for analyzing more complex brains.

RNA Polymerase III (Pol III) mutations cause hypomyelinating leukodystrophy (HMLD), a fatal neurodegenerative disease caused by defective CNS nerve myelination. In yeast, conserved Pol III HMLD disease mutations cause growth defects, which are rescued by inhibiting the sumoylation pathway. Professor Tony Hunter’s lab will investigate if Pol III mutant-derived neurodegenerative phenotypes are recapitulated in human neural cells and in animal models, and, if so, how the sumoylation pathway contributes to such phenotypes. This would implicate sumoylation as a target for rescue of Pol III-related neurodegenerative diseases.

Intercellular interactions activate signaling pathways and cause phenotypic changes. The Wahl lab suspects such interactions contribute to cancer metastasis, a deadly killer of cancer patients, yet there are no methods to track the constellation of cells that a cancer cell interacts with in the metastatic niche. Professor Geoffrey Wahl, postdoctoral researcher Nikki Lytle and project scientist Leo Li will develop Contact Tracing, an innovative tool to indelibly label interacting cells for subsequent identification, isolation and analysis. This may reveal cellular relationships that drive metastatic progression.

2020 Collaboration Grants

Professors John ReynoldsJuan Carlos Izpisua Belmonte and Rusty Gage will examine the hallmarks of aging in animal models to determine whether mobile DNA elements, called LINE1 retrotransposons, can be manipulated to slow or reverse aging to create an innovative healthy aging intervention.

Professor Martyn Goulding, Associate Professor Axel Nimmerjahn and Assistant Professor Sung Han will investigate how sensory signals from the skin, the biggest sensory organ, are processed as they travel to the brain. The project will potentially reveal new targets for sensory dysfunction, which can occur with chronic pain and autism spectrum disorders.

2020-2021: Rose Hills Foundation Innovation Grant Program Awardee:

Assistant Professor Dannielle Engle was named The Rose Hills Foundation’s 2020-2021 Innovator Grant Program awardee. The award provides $100,000 for Engle to investigate how the sugar CA19-9 makes pancreatic cancer more aggressive, increases metastatic spread, and interacts with metastatic sites. As most pancreatic cancer patients are diagnosed with metastatic disease, blocking CA19-9 interactions may intercept metastatic spread.

2020 Innovation Grants

One of the holy grails of circadian biology research is to understand what determines whether an animal is active during the day (diurnal) or active during the night (nocturnal). To begin to answer this question, Professor Satchidananda Panda will measure changes in hormones and gene activity as two species of animals— the owl monkey and mouse—switch between diurnal and nocturnal lifestyles. One potential outcome of this work will be strategies for improving the health and life quality of shift workers, a growing fraction of the worldwide workforce.

The RAS protein is frequently mutated in some of the most difficult to treat cancers, including lung and colon. To better understand the contribution of RAS to cancer, Assistant Professor Edward Stites will activate a particularly deadly version of RAS in the microscopic worm C. elegans, a widely used model organism. Subsequent genetic and chemical screens will help to reveal new drugs and therapeutic strategies for treating RAS-associated cancers.

Cancer cells are metabolically greedy, which often leads to nutrient depletion within and around a tumor. Professor and Director of the NOMIS Center for Immunobiology and Microbial Pathogenesis Susan Kaech hypothesizes that this lack of nutrients starves immune cells that might otherwise recognize and eliminate the tumor. The team will map the nutrient landscape of different tumors, with the goal of identifying specific nutrients (metabolites) that boost immune cell effectiveness. Results will help to improve current anti-cancer immunotherapies.

2019-2020: Rose Hills Foundation Innovation Grant Program Awardee:

Assistant Professor Kenta Asahina was named The Rose Hills Foundation’s 2019-2020 Innovator Grant Program awardee, in coordination with Salk’s Innovation Grants Program. The award provides $100,000 for Asahina to explore a novel approach to studying aging. Asahina, who is holder of The Helen McLoraine Developmental Chair in Neurobiology, will study how the nervous system can contribute to lifespan difference between sexes. Females in many animal species, including humans, live longer than males. Asahina’s work aims to provide a novel paradigm for studying aging, with a potential to understand the biological mechanisms that specify human lifespan.

July 2019: Salk Collaboration Grants

Professors Ronald Evans and Susan Kaech and Associate Professor Ye Zheng, will lead a team in exploring if a healthy diet and exercise reduces levels of inflammation and renders tumor cells more sensitive to the immune system, with the goal of expanding the efficacy of immunotherapies.

Professors Alan Saghatelian, Joseph Noel and Jan Karlseder will undertake a multi-pronged approach to develop small-molecule inhibitors of the DNA repair regulator CYREN, with the goal of specifically sensitizing tumor cells to genotoxic therapy.

December 2018: Innovation Grants Awardees

Professor Juan Carlos Izpisua-Belmonte of the Gene Expression Laboratory seeks to determine whether trans-generational epigenetic inheritance can take place in mammals. If possible, this would mean that the experiences that have shaped the genetic expression of parents (e.g., adaptations to environmental challenges) could be passed to children—a significant question in evolutionary biology which remains unanswered.

Associate Professor Sreekanth Chalasani of the Molecular Neurobiology Laboratory alongside Research Associate Chen-Min Yeh and Staff Scientist Gerald Pao seek to answer the question of whether or not brain activity can be used to control a robot. They will leverage advanced live microscopy techniques, in addition to supercomputer technology, to see whether or not the brain activity of zebrafish larvae can control a fish robot.

Professor and Laboratory Head David Schubert of the Cellular Neurobiology Laboratory will work with Staff Scientist Antonio Currais to identify new drug candidates for Alzheimer’s disease using screens for mitochondrial dysfunction. Specifically, they will look at a large library of plant extracts that have pharmacological value to see any have protective traits that are able to preserve mitochondrial function—one of the earliest clinical challenges in Alzheimer’s.

Joseph Ecker, a Professor in the Plant Molecular and Cellular Biology Laboratory and the Director of the Genomic Analysis Laboratory, is working to develop a method that allows researchers to record the transcriptional activity within a cell into the genetic code so that they can analyze the cascade of transcriptional events that occur during an organism’s development as well as cell reprogramming.

Professor Edward Callaway in the Systems Neurobiology Laboratory is undertaking a project that will develop innovative methods for flexible, high-throughput analysis of specific brain-cell types across any species, including humans, that can identify the genetic enhancers that restrict expression of genes that have been passed from one cell (or whole organism) to another.

July 2018: Rose Hills Foundation Innovation Grant Awardee

Xin Jin, an associate professor, will explore how networks of neurons communicate with one another to relay messages from the brain to the limbs. His lab uses research techniques in novel combinations to discover previously unknown connections between brain regions and how they contribute to movement control. Jin’s work may lead to new avenues for treating disorders such as Parkinson’s disease.

July 2018: Innovation Grants Awardees

Thomas Albright, professor and director of the Vision Research Laboratory, will work with Staff Scientist Sergei Gepshtein to investigate the neurological basis of how individuals recognize others, which could lead to better ways to identify suspects during criminal investigations. The goal is to help reduce cases where innocent people are misidentified during lineups.

Wolfgang Busch, associate professor, Uri Manor (core director, Waitt Advanced Biophotonics Core) and Saket Navlakha (assistant professor) will explore the biological algorithms that guide how plants grow and pattern their root systems in search of nutrients. This research may uncover how plants can efficiently find water and other elements in the soil, advancing Salk’s efforts to engineer plants capable of surviving increasingly erratic climate patterns.

Jesse Dixon, a Helmsley-Salk Fellow, is exploring how mutations in individual cells can lead to the development of cancer. His team seeks to understand tumors’ evolutionary histories and potentially reveal new strategies that can halt tumor progression by interrupting the evolution of cells from normal to cancerous.

Susan Kaech, professor and director of the NOMIS Center for Immunobiology and Microbial Pathogenesis, and Ronald Evans, professor and director of the Gene Expression Laboratory and a Howard Hughes Medical Institute investigator, will embark on a study of lipid metabolism as a weapon in the fight against pancreatic cancer, a notoriously difficult-to-treat disease.