SALK NEWS

Salk Institute for Biological Studies - SALK NEWS

Salk News


Natural plant compound prevents Alzheimer’s disease in mice

LA JOLLA—A chemical that’s found in fruits and vegetables from strawberries to cucumbers appears to stop memory loss that accompanies Alzheimer’s disease in mice, scientists at the Salk Institute for Biological Studies have discovered. In experiments on mice that normally develop Alzheimer’s symptoms less than a year after birth, a daily dose of the compound—a flavonol called fisetin—prevented the progressive memory and learning impairments. The drug, however, did not alter the formation of amyloid plaques in the brain, accumulations of proteins which are commonly blamed for Alzheimer’s disease. The new finding suggests a way to treat Alzheimer’s symptoms independently of targeting amyloid plaques.


Salk scientists identify factors that trigger ALT-ernative cancer cell growth

LA JOLLA, CA—Highly diverse cancers share one trait: the capacity for endless cell division. Unregulated growth is due in large part to the fact that tumor cells can rebuild protective ends of their chromosomes, which are made of repeated DNA sequences and proteins. Normally, cell division halts once these structures, called telomeres, wear down. But cancer cells keep on going by deploying one of two strategies to reconstruct telomeres.


Salk scientist Fred Gage named to National Academy of Inventors

LA JOLLA—Fred H. Gage, professor in the Salk Institute’s Laboratory of Genetics and holder of the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Disease, has been elected a Fellow of the National Academy of Inventors (NAI).


Missing molecule in chemical production line discovered

LA JOLLA, CA—It takes dozens of chemical reactions for a cell to make isoprenoids, a diverse class of molecules found in every type of living organism. Cholesterol, for example, an important component of the membranes of cells, is a large isoprenoid chemical. The molecule that gives oranges their citrusy smell and taste is an isoprenoid, as is the natural antimalarial drug artemisinin.


Salk Institute Board of Trustees elects two visionary business leaders

LA JOLLA, CA—The Salk Institute is pleased to announce that Alan D. Gold and David F. Hale have been elected to its Board of Trustees.


Salk scientists crack riddle of important drug target

LA JOLLA, CA—A new approach to mapping how proteins interact with each other, developed at the Salk Institute for Biological Studies, could aid in the design of new drugs for diseases such as diabetes and osteoporosis. By reengineering proteins using artificial amino acids, the Salk scientists determine the detailed molecular structure of a cellular
switch and its ligand, the molecule that turns it on. The switch—corticotrophin releasing factor type 1
(CRF1R)—belongs to a class of cellular receptors whose structures are notoriously hard to determine. These receptors regulate processes throughout the body and are involved in many diseases.


Study connects dots between genes and human behavior

LA JOLLA, CA—Establishing links between genes, the brain and human behavior is a central issue in cognitive neuroscience research, but studying how genes influence cognitive abilities and behavior as the brain develops from childhood to adulthood has proven difficult.


Salk scientists for the first time generate “mini-kidney” structures from human stem cells

LA JOLLA, CA—Diseases affecting the kidneys represent a major and unsolved health issue worldwide. The kidneys rarely recover function once they are damaged by disease, highlighting the urgent need for better knowledge of kidney development and physiology.


Study finds a patchwork of genetic variation in the brain

LA JOLLA, CA—It was once thought that each cell in a person’s body possesses the same DNA code and that the particular way the genome is read imparts cell function and defines the individual. For many cell types in our bodies, however, that is an oversimplification. Studies of neuronal genomes published in the past decade have turned up extra or missing chromosomes, or pieces of DNA that can copy and paste themselves throughout the genomes.


Induced pluripotent stem cells reveal differences between humans and great apes

LA JOLLA, CA—Researchers at the Salk Institute for Biological Studies have, for the first time, taken chimpanzee and bonobo skin cells and turned them into induced pluripotent stem cells (iPSCs), a type of cell that has the ability to form any other cell or tissue in the body.


Salk scientists expand the genetic code of mammals to control protein activity in neurons with light

LA JOLLA, CA—With the flick of a light switch, researchers at the Salk Institute for Biological Studies can change the shape of a protein in the brain of a mouse, turning on the protein at the precise moment they want. This allows the scientists to observe the exact effect of the protein’s activation. The new method, described in the Oct. 16, 2013, issue of the journal Neuron, relies on specially engineered amino acids—the molecules that make up proteins—and light from an LED. Now that it has been shown to work, the technique can be adapted to give researchers control of a wide variety of other proteins in the brain to study their functions.


Innovative research earns Salk scientist EUREKA award

LA JOLLA, CA—The National Institutes of Health (NIH) has selected Axel Nimmerjahn for a highly competitive EUREKA (Exceptional Unconventional Research Enabling Knowledge Acceleration) grant. Nimmerjahn is an Assistant Professor in the Waitt Advanced Biophotonics Center and holds the Richard Allan Barry Developmental Chair. The award, in the amount of $1.38M over four years, will support Nimmerjahn’s goal of better understanding the relationship between spinal cord physiology and brain activity and behavior. Data from this research should foster development of new treatment and rehabilitation strategies for spinal cord injury, tumors, infections, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular dystrophy.


Salk Institute elects Elizabeth Keadle to its Board of Trustees

LA JOLLA, CA—The Board of Trustees of the Salk Institute is pleased to announce the election of Elizabeth Keadle as its newest member.


The Salk Institute for Biological Studies appoints Anna-Marie Rooney as Chief Communications Officer

LA JOLLA, CA—The Salk Institute for Biological Studies announced the hiring of Anna-Marie Rooney as its Chief Communications Officer, to oversee all aspects of the world-renowned Institute’s communications efforts including strategy, print publications, media relations, electronic/web communications, social media outreach, and multimedia resources.


Promising new research earns Salk scientist Career Development Award

LA JOLLA, CA—The Juvenile Diabetes Research Foundation (JDRF) has given Salk scientist Mark Huising a five-year, $750,000 Career Development Award for his proposed study on how a novel network of receptors in human islets receives and integrates molecular signals. In pre-clinical models, activation of these receptors has proven to actually prevent diabetes. Career Development Awards are highly competitive and bestowed upon only a handful of people each year.


Insulin plays a role in mediating worms’ perceptions and behaviors

LA JOLLA,CA—In the past few years, as imaging tools and techniques have improved, scientists have been working tirelessly to build a detailed map of neural connections in the human brain—with the ultimate hope of understanding how the mind works.


Salk Scientist Tatyana Sharpee receives CAREER award from NSF

LA JOLLA, CA—Salk scientist Tatyana Sharpee has received a CAREER award from the National Science Foundation (NSF) to fund upcoming research in her lab. The CAREER award supports faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations.


Salk scientists and colleagues discover important mechanism underlying Alzheimer’s disease

LA JOLLA, CA—Alzheimer’s disease affects more than 26 million people worldwide. It is predicted to skyrocket as boomers age—nearly 106 million people are projected to have the disease by 2050. Fortunately, scientists are making progress towards therapies. A collaboration among several research entities, including the Salk Institute and the Sanford-Burnham Medical Research Institute, has defined a key mechanism behind the disease’s progress, giving hope that a newly modified Alzheimer’s drug will be effective.


The ‘weakest link’ in the aging proteome

LA JOLLA, CA—Proteins are the chief actors in cells, carrying out the duties specified by information encoded in our genes. Most proteins live only two days or less, ensuring that those damaged by inevitable chemical modifications are replaced with new functional copies.


Salk researchers develop new model to study schizophrenia and other neurological conditions

LA JOLLA, CA—Schizophrenia is one of the most devastating neurological conditions, with only 30 percent of sufferers ever experiencing full recovery. While current medications can control most psychotic symptoms, their side effects can leave individuals so severely impaired that the disease ranks among the top ten causes of disability in developed countries.