Juan Carlos Izpisua Belmonte

Professor

Gene Expression Laboratory

Roger Guillemin Chair

Salk Institute for Biological Studies - Videos

Videos


Early gene-editing success holds promise for preventing inherited diseases

LA JOLLA—Scientists have, for the first time, corrected a disease-causing mutation in early stage human embryos with gene editing. The technique, which uses the CRISPR-Cas9 system, corrected the mutation for a heart condition at the earliest stage of embryonic development so that the defect would not be passed on to future generations. Read more »


Novel tool confers targeted, stable editing of epigenome in human stem cells

Salk Institute scientists have developed a novel technology to correct disease-causing aberrations in the chemical tags on DNA that affect how genes are expressed. These types of chemical modifications, collectively referred to as epigenetics or the epigenome, are increasingly being considered as important as the genomic sequence itself in development and disease.


New findings highlight promise of chimeric organisms for science and medicine

Rapid advances in the ability to grow cells, tissues and organs of one species within an organism of a different species offer an unprecedented opportunity for tackling longstanding scientific mysteries and addressing pressing human health problems, particularly the need for transplantable organs and tissues.

In a tour de force paper published in the January 26, 2017, issue of the journal Cell, scientists at the Salk Institute report breakthroughs on multiple fronts in the race to integrate stem cells from one species into the early-stage development of another.


Turning back time: Salk scientists reverse signs of aging

Scientists at the Salk Institute have found that intermittent expression of genes normally associated with an embryonic state can reverse the hallmarks of old age.

This approach, which not only prompted human skin cells in a dish to look and behave young again, also resulted in the rejuvenation of mice with a premature aging disease, countering signs of aging and increasing the animals’ lifespan by 30 percent. The early-stage work provides insight both into the cellular drivers of aging and possible therapeutic approaches for improving human health and longevity.


New gene-editing technology partially restores vision in blind animals

Salk researchers have discovered, for the first time, how to place DNA in specific locations in non-dividing cells.


Stem Cell Discovery Offers Potential For Regenerative Medicine

Scientists in the laboratory of Juan Carlos Belmonte at The Salk Institute have discovered a new type of stem cell that could potentially generate mature, functional tissues.

Scientists at the Salk Institute have discovered a novel type of pluripotent stem cell–cells capable of developing into any type of tissue–whose identity is tied to their location in a developing embryo. This contrasts with stem cells traditionally used in scientific study, which are characterized by their time-related stage of development. Read more »


Scientists discover key driver of human aging

A study tying the aging process to the deterioration of tightly packaged bundles of cellular DNA could lead to methods of preventing and treating age-related diseases such as cancer, diabetes and Alzheimer’s disease, as detailed April 30, 2015, in Science.

In the study, scientists at the Salk Institute and the Chinese Academy of Science found that the genetic mutations underlying Werner syndrome, a disorder that leads to premature aging and death, resulted in the deterioration of bundles of DNA known as heterochromatin. Read more »


Gene-editing technique offers hope for hereditary diseases

For thousands of women around the globe carrying a mitochondrial disease, having a healthy child can be a gamble. This set of diseases affect mitochondria, tiny powerhouses that generate energy in the body’s cells and are passed exclusively from mother to child.

Women wishing to prevent their children from inheriting mitochondrial diseases have typically relied on preimplantation genetic diagnosis to pick the healthiest embryos, but that is no guarantee of having a healthy baby. Read more »


Aging, interrupted

The current pace of population aging is without parallel in human history but surprisingly little is known about the human aging process, because lifespans of eight decades or more make it difficult to study. Now, researchers at the Salk Institute for Biological Studies replicated premature aging in the lab, allowing them to study ageing-related disease in a dish.
Read more »


Education

Bachelor's of Pharmacy and Science, University of Valencia
PhD, Universities of Bologna, Italy and Valencia, Spain
Postdoctoral Fellow, University of Marburg; The European Molecular Biology Laboratories at Heidelberg, Germany; University of California, Los Angeles