Salk Institute
Waitt Advanced Biophotonics Center

About Biophotonics

In the most general terms biophotonics is the convergence of photonics and the life sciences.

Photonics—the science and technology of generation, manipulation and detection of light—uses photons, quantum-like particles of light, instead of electrons to transmit, process, and store information. The invention of lasers, a concentrated source of monochromatic and highly directional light, revolutionized photonics in the 1960s and brought us technological advancements such as bar code scanners, CD players, and, with fluorescence microscopes, the first taste of the power of biophotonics.

Today, biophotonics is widely regarded as the key science upon which the next generation of clinical tools and biomedical research instrumentation will be based. Although nature has used the principle of biophotonics to harness light for photosynthesis and to create vision for millennia, it wasn't until about 10 years ago that a substantial transfer of photonics technologies to biological applications began to transform medical and life sciences.

The main areas of biophotonics applications include:

Bioimaging — "Seeing is believing"

It is difficult to overestimate the amount of information contained in visual data, making high-powered microscopes the most important tool available to molecular biologists.

The resolution of conventional optical microscopes, including fluorescence microscopes, is inherently limited by the wavelength of light. With these microscopes, objects separated by less than 200 nanometers cannot be distinguished from one another, which is insufficient to pinpoint the location of individual proteins. For the first time, super-resolution live-cell imaging allows researchers to capture short videos of fast-moving cellular processes while discerning the precise location of nearly each individual protein they are studying.

Medical Biophotonics

The ability to probe and image (see) tissues is leading to a wide range of novel diagnostic methods and therapeutic applications. Current examples include Coherence Optical Tomography (OCT), which has revolutionized the field of Ophthalmology by allowing the early diagnosis of macular degeneration (MD) in the retina, and Photodynamic Therapy (PDT) approaches for treatment of cancers by retarding the growth of new blood vessels and vasculature.


Get Involved

Sign up for our email newsletter

Fill out my online form.
Salk Institute for Biological Studies
Street: 10010 N Torrey Pines Rd
City: La Jolla, CA 92037
Phone: 858.453.4100
Charity Navigator Rating
  • Salk Twitter
  • Salk LinkedIn
  • Salk Facebook
  • Salk Instagram
  • Salk Google+
  • Salk YouTube
  • Salk RSS Feed
© Copyright 2015 Salk Institute for Biological Studies | Privacy Policy About Scientists & Research News & Media Events Support