Currently, there are few effective therapies
for neurologic diseases, birth defects and
damage from injury and aging. It doesn’t
have to be that way.
Salk scientists have a bold plan to revolutionize neuroscience. We are at the cusp of a revolution in neuroscience. In the past, scientists were limited to studying one neuron at a time—but the nervous system is all about connections. Now, a more sophisticated neuroscience is emerging at the Salk Institute, one capable of explaining how billions of neurons work in unison to allow us to think, feel and move. Salk scientists are pioneering advances such as new imaging technologies, stem cell techniques and the ability to control neuron function with light. At the same time, they are working across traditional boundaries of neuroscience, merging molecular neurobiology, neurophysiology, and computational and behavioral neuroscience. This new, all-encompassing approach is revealing critical details of the nervous system’s molecular and cellular machinery and allowing us to study multiple living neurons simultaneously for the first time in history. Salk scientists are mapping the brain’s circuitry, modeling human disease in the laboratory and exploring the genetic links to cognition and behavior, work that lays the groundwork for prevention and treatment of neurologic diseases and injuries such as Alzheimer’s, schizophrenia, spinal cord damage and blindness.
Thanks to powerful new technologies and research methods, neuroscientists can now study many neurons and genes simultaneously—a breakthrough that will provide a better understanding of the complex wiring of the brain, spinal cord and peripheral nervous system. Part of the first-ever Campaign for Salk, the Dynamic Brain Initiative is an aggressive plan for preventing and treating neurologic diseases and injuries. Through this initiative, Salk scientists will work toward:
The Dynamic Brain Initiative will allow Salk scientists to work seamlessly across traditional boundaries, merging molecular neurobiology, neurophysiology and computational and behavioral neuroscience to produce a sophisticated understanding of the brain, from individual genes to neuronal circuits to behavior.
The devastating effects of neurologic disorders are widely recognized, yet government funding for this vital research has declined. Philanthropic support will be essential for continued discovery, and Salk is specifically seeking support for the following four components of the Dynamic Brain Initiative:
SEED GRANTS AND LEVERAGING FUND
By providing seed grants and the leveraging funds
necessary to obtain larger grants, the initiative will launch
research projects that cross many sub-disciplines.
POSTDOCTORAL AND GRADUATE FELLOWSHIPS
The endowed fellowship program will encourage
interdisciplinary studies on nervous system function and
disorders, and will train the next generation of highly
effective neuroscientists.
NEW FACULTY APPOINTMENTS
The Institute will recruit outstanding scientists working
at the cutting-edge of neuroscience, in areas such as
viral and molecular-genetic approaches, light-based
techniques for manipulating the activity of neurons and
optical imaging of neural activity. These new faculty
will integrate our existing areas of expertise and enhance
our understanding of the nervous system.
TECHNOLOGY FUND
Research technology is advancing rapidly in the
neurosciences. Establishing an endowed technology
fund will allow us to invest in crucial new equipment
to visualize and measure brain function in ways never
before imagined.
The Dynamic Brain Initiative has a clearly defined research agenda that will focus on six interconnected aspects of neuroscience:
LOCOMOTION
Salk neuroscientists will explain how the brain controls
movement and will help generate treatments for spinal
cord injuries and movement disorders, such as amyotrophic
lateral sclerosis (ALS), Parkinson’s disease and multiple
sclerosis. They will develop cutting-edge experimental
approaches, such as using miniature microscopes to
image neurons in live animals and modifying viruses
to study motor circuits.
VISION AND SENSORY SYSTEMS
To develop more effective therapies for vision loss,
we need a far more detailed understanding of how the
brain processes visual information. Decoding the visual
system will lead to new therapies for disorders of vision
and other sensory systems and will explain how deficits
in sensation are connected to autism, schizophrenia
and other mental illnesses.
MODELING HUMAN DISEASE
Using the techniques of stem cell biology and genetically
modified mice, Salk scientists have developed powerful
new models of autism, schizophrenia and brain cancer.
The Dynamic Brain Initiative will greatly expand these
disease models and their use in testing potential new
drugs for human patients.
MAPPING NEURAL CIRCUITS
To truly understand how the brain operates in both
healthy and diseased states, scientists need to map
out the brain's neural networks and unravel how
they interrelate. Salk researchers are developing new
tools and techniques, such as using light to turn cells
on and off to see what roles they play in brain function.
LINKING GENES TO BEHAVIOR
Neuroscientists are working to link particular genes
to specific functions and behaviors, such as speech,
movement and mood. With new technologies, Salk
researchers will combine gene- and cell-level studies
with behavioral research to understand how genes
orchestrate brain functions such as learning and
decision-making.
AGING AND THE BRAIN
To stave off or reverse diseases such as Alzheimer's
and Parkinson's, scientists need to understand the
biochemical and genetic changes that occur in the
brain as we age. Salk scientists will explore how the
brain changes over time, from the molecular level
to functions involving millions of cells, laying the
groundwork for prevention and treatment of age-related
neurologic diseases.
Fred Gage converted skin cells from schizophrenic patients into neurons that could be studied in the laboratory, avoiding the need to obtain cells from a patient’s brain.
Terrence Sejnowski revealed a connection between two ion channels that, when misaligned, can cause the many symptoms of multiple sclerosis.
Sam Pfaff discovered a feature of brain development that helps explain how complex neuron wiring patterns are programmed using just a handful of genes.
Tatyana Sharpee developed methods of using recordings from the natural environment, combined with statistical modeling, to explore information processing in the brain.
Martyn Goulding showed how spinal cord neurons keep one side of the body from getting ahead of the other during locomotion. This removed an obstacle to developing new treatments for spinal cord injuries.
E. J. Chichilnisky recorded the activity of hundreds of neurons in the retina, research that is guiding the development of artificial retinas for the blind.