SD-NSC-HETEROGENEITY OF AGING CORE

MASS SPECTROMETRY CORE FOR PROTEOMICS AND METABOLOMICS

> Jolene Diedrich, Ph.D. Antonio Michel Pinto, Ph.D. Faculty Advisor: Alan Saghatelian

SAN DIEGO NATHAN SHOCK CENTER 2022 WORKSHOP

Mass Spectrometers

Prebvs

Success comes from working together

- We meet with you to discuss project details and goals, ٠ determine the best experimental strategy
- You prepare and submit samples
- We run samples, generate data and send to you ٠
- We meet again with you to discuss the data, plan future • experiments
- We assist with incorporating data into papers / grants ٠

Protein Identification: Gel bands or IPs

Protein Identification: Binding Partners by Co-Immunoprecipitation

Metabolic Labeling Improves Quantitation but Increases Complexity

Pulsed SILAC can be used to measure protein turnover

SILAC

salk

UC San Diego

School of Medicine

Sanford Burnham

Prebys

Tandem Mass Tags (TMT) Enable Quantitation Without Increasing Complexity

Amine reactive tags

Sanford Burnhan Prebys

Proximity Labeling to Identify Protein- Protein Interactors of Mapping of Organelles

Many types of proximity labeling

- BirA
- BioID
- BioID2
- Turbo ID
- APEX
- HRP

Qian Chu,¹ Thomas F. Martinez,¹ Sammy Weiser Novak,² Cynthia J. Donaldson,¹ Dan Tan,¹ Joan M. Vaughan,¹ Tina Chang,¹ Jolene K. Diedrich,¹ Leo Andrade,² Andrew Kim,¹ Tong Zhang,² Uri Manor,¹² and Alan Saghatelian¹³¹

Mass spectrometry and imaging using the same constructs

REPORT

Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging

Hyun-Woo Rhee^{1,*,+}, Peng Zou^{1,*}, Namrata D. Udeshi², Jeffrey D. Martell¹, Vamsi K. Mootha^{2,3,4}, Steven A. Carr², Alice Y. Ti... + See all authors and affiliations

UC San Diego School of Medicine

HETEROGENEITY OF AGING CORE - PROTEOMICS / METABOLOMICS

Developmental Cell Supports open access

ARTICLE | VOLUME 56, ISSUE 21, P2952-2965.E9, NOVEMBER 08, 2021

Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain

Shefali Krishna • Rafael Arrojo e Drigo 4 • Juliana S. Capitanio • Ranjan Ramachandra • Mark Ellisman • Martin W. Hetzer A 5 🖂 • Show footnotes

Published: October 28, 2021 • DOI: https://doi.org/10.1016/j.devcel.2021.10.008 • 🖲 Check for updates

ETC complexes and supercomplexes, turnover rates measured by native gel bands and SILAC

UC San Diego School of Medicine

Various Proteomic Approaches Available to Investigate Aging Systems

LIPIDOMICS

- Instrument: Q-Exactive •
- Lipid profile (positive/negative ionization modes) ٠
- Database-like search (LipidSearch) ullet
- **Relative Quantitation** •
 - Internal Standards, Heavy-Labeled Lipids

Prebvs

Prebys

TARGETED METABOLOMICS

- Several Targeted Methods Available
 - Bile Acids
 - Polar Metabolites (TCA Cycle)
 - Amino Acids
 - Short Chain Fatty Acids
 - FAHFAs
- Method Development ٠
 - Customized methods

HETEROGENEITY OF AGING CORE - PROTEOMICS / METABOLOMICS

UC San Diego School of Medicine

JCI insight

Inhibition of ceramide accumulation in AdipoR1^{-/-} mice increases photoreceptor survival and improves vision

Dominik Lewandowski,¹ Andrzej T. Foik,² Roman Smidak,¹ Elliot H. Choi,^{1,3} Jianye Zhang,¹ Thanh Hoang,⁴ Aleksander Tworak,¹ Susie Suh,^{1,3} Henri Leinonen,^{1,5} Zhigian Dong,⁶ Antonio F.M. Pinto,⁷ Emily Tom,¹ Jennings Luu,^{1,3} Joan Lee,⁸ Xiuli Ma,⁶ Erhard Bieberich,⁹ Seth Blackshaw,⁴ Alan Saghatelian,⁷ David C. Lyon,¹⁰ Dorota Skowronska-Krawczyk,^{1,11} Marcin Tabaka,² and Krzysztof Palczewski^{1,11,12,13}

AdipoR1-ko causes gradual thinning of the outer nuclear layer

Reference information: *[CI Insight.*

2022;7(4):e156301. https://doi.org/10.1172/jci. insight.156301.

Adiponectin Receptor 1 (ADIPOR1): lipid/glucose metabolism regulator with ceramidase activity.

Mutations have been associated with advanced age-related macular degeneration in Finnish people.

Prebvs

ADIPOR1-ko causes accumulation of ceramides in the retina. leading to inflammation and cell death

Ceramides accumulate in the retina and retinal pigment epithelium/eyecup. Some ceramide species showed 1.5- to 2.5-fold increase in the retina and RPE/eycup of 4-month old AdipoR1-Ko (red) mice.

HETEROGENEITY OF AGING CORE - PROTEOMICS / METABOLOMICS

UC San Diego School of Medicine

Thanks!

