#### Building Multidisciplinary Research in Understanding Aging Biology

Meng Wang

Department of Molecular and Human Genetics Huffington Center on Aging San Diego Nathan Shock Center Workshop March 25, 2022

C PARA

Baylor College of Medicine



1907, 25 years old



1972, 90 years old

#### Pablo Picasso



#### Risk for COVID-19 Infection, Hospitalization, and Death By Age Group

Updated Nov. 22, 2021 Print

|                                                     |                  |                   |                    |                    |                    |                    |                    | Ce                 | NTERS FOR DISEA  |
|-----------------------------------------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|
| Rate compared<br>to 18-29 years<br>old <sup>1</sup> | 0-4<br>years old | 5-17<br>years old | 18-29<br>years old | 30-39<br>years old | 40-49<br>years old | 50-64<br>years old | 65-74<br>years old | 75-84<br>years old | 85+<br>years old |
| Cases <sup>2</sup>                                  | <1x              | 1x                | Reference<br>group | 1x                 | 1x                 | 1x                 | 1x                 | 1x                 | 1x               |
| Hospitalization <sup>3</sup>                        | <1x              | <1x               | Reference<br>group | 2x                 | 2x                 | 4x                 | 5x                 | 8x                 | 10x              |
| Death <sup>4</sup>                                  | <1x              | <1x               | Reference<br>group | 4x                 | 10x                | 25x                | 65x                | 150x               | 370x             |
|                                                     |                  |                   |                    |                    |                    |                    |                    |                    |                  |

Meet the 101-year-old who was born on a ship during the 1918 flu pandemic and just beat coronavirus



102-year-old born during 1918 pandemic beats COVID-19 for second time



'He just got better and better': 104-year-old veteran beats coronavirus in time to celebrate his birthday





Dirk Bohmann



Henri Japser



JNK signaling in longevity regulation

PhD, University of Rochester

#### SAGE reveals redox/stress genes induced by JNK activation



✓ Activation of JNK signaling increases oxidative stress tolerance

Wang et al. Dev Cell 2003

#### SAGE reveals redox/stress genes induced by JNK activation



Power of systemic approach

Reveal new regulatory mechanisms in a systematic manner

✓ Activation of JNK signaling increases oxidative stress tolerance

✓ Activation of JNK signaling prolongs lifespan in *Drosophila* 



Wang et al. Science 2008

Wang et al. Dev Cell 2003

#### **Cellular analysis reveals JNK activation in Insulin-Producing Cells**



✓ Activation of JNK signaling in IPC prolongs lifespan in *Drosophila* 



#### Power of cellular imaging Visualize *in vivo* cellular changes in time and space

Wang et al. Cell 2005



#### Whole-body Transparency:

Visualize cellular phenotypes in live organisms

#### Genetic Tractability:

Search for new regulatory genes via high-throughput screening

#### Power of systemic approach

Reveal new regulatory mechanisms in a systematic manner

#### Power of cellular imaging

Visualize *in vivo* cellular changes in time and space



#### ✓ Whole-body Transparency:

Visualize cellular phenotypes in live organisms

#### Genetic Tractability:

Search for new regulatory genes via high-throughput screening

#### ✓ Short Lifespan:



#### Power of systemic approach

Reveal new regulatory mechanisms in a systematic manner

#### Power of cellular analysis

Visualize *in vivo* cellular changes in time and space



Postdoc, MGH/Harvard



Gary Ruvkun



Lipid Metabolism and Longevity

#### Identification of a pro-longevity lipase



**RNA interference screening** 

Wang et al. Science 2008

Nile Red cellular imaging

















#### Lysosomal Metabolism **Microbial Metabolism** & & Longevity Longevity







#### **Metabolic Imaging** & Longevity



#### Lysosomal Metabolism & Longevity







#### Lysosomal LIPL-4/K04A8.5 lipase promotes longevity



Andy Folick



Rudy Zechner Group





Folick et al. Science 2015

#### LIPL-4-induced lipolysis enhances nuclear translocation of LBP-8



LBP-8: fatty acid binding protein

Folick et al. Science 2015

#### LBP-8 is sufficient to promote longevity



LBP-8: fatty acid binding protein

Folick et al. Science 2015

#### LIPL-4-induced lipolysis induces lysosomal levels of OEA



**OEA**: Oleoylethanolamide

Folick et al. Science 2015

#### **OEA directly binds with LBP-8 and promotes longevity**



**OEA**: Oleoylethanolamide **LBP-8**: Fatty acid binding protein

Folick et al. Science 2015; Tillman et al. Sci Rep 2019



#### Intestine/Fat Storage Cells





David Moore Group

LBP-8: Fatty Acid Binding ProteinOEA: OleoylethanolamideNHR-49: PPAR-alphaNHR-80: HNF4-alpha

# Power of collaboration Learn from experts in different fields. Advance mechanistic inquiry in a deeper manner.

#### After 5 Zoom meetings ...





David Moore Group



Rudy Zechner Group



Eric Ortlund Group

#### **Intestine/Fat Storage Cells**







#### Microbial Metabolism & Longevity



Phylogenetic Heterogeneity Host Longevity



Christophe Herman Group

#### How about different genes in same bacteria?





Christophe Herman Group





#### Bacterial Genetic Heterogeneity ? → → Host Longevity

#### 29 bacterial deletion mutants promote C. elegans longevity





Han et al. Cell 2017

#### 29 bacterial deletion mutants promote C. elegans longevity





Han et al. Cell 2017

#### H-NS & LON inhibit RcsA that controls Colanic Acid (CA) synthesis



#### H-NS & LON inhibit RcsA that controls Colanic Acid (CA) synthesis



#### $\Delta hns/\Delta lon$ deletion increases CA production from bacteria



#### $\Delta hns / \Delta lon$ deletion increases CA production from bacteria



#### Δhns/Δlon deletion requires CA overproduction to promote longevity



#### **Purified CA sufficiently promotes longevity in the host**



![](_page_49_Picture_0.jpeg)

### How to fine-tune bacterial metabolite production in the host gut?

![](_page_50_Picture_0.jpeg)

## Analysis of Rompone

Lucas Hartsough

![](_page_50_Picture_3.jpeg)

Mooncheol Park

![](_page_50_Picture_5.jpeg)

Jeff Tabor Group

## How to fine-tune bacterial metabolite production in the host gut?

#### **Optogenetic control of bacterial gene expression**

![](_page_51_Figure_1.jpeg)

#### Light can switch ON/OFF bacterial gene expression in the gut

![](_page_52_Figure_1.jpeg)

Hartsough et al. eLife 2020

#### **Engineer light-inducible CA-producing bacteria**

![](_page_53_Figure_1.jpeg)

#### Promote longevity with light-inducible CA-producing bacteria

![](_page_54_Figure_1.jpeg)

- Quantitative
- Reversible
- Rapid Time Control
- Fine Spatial Resolution

![](_page_55_Picture_4.jpeg)

![](_page_56_Picture_0.jpeg)

#### How does CA exert beneficial effects on the host?

#### CA increases mitochondrial fragmentation in intestinal cells

![](_page_57_Picture_1.jpeg)

Han et al. Cell 2017

#### CA-induced longevity requires mitochondrial fission in the gut

![](_page_58_Figure_1.jpeg)

#### Increasing intestinal mitochondrial fission promotes longevity

![](_page_59_Figure_1.jpeg)

![](_page_60_Picture_0.jpeg)

#### Metabolic Imaging & Longevity

![](_page_61_Picture_1.jpeg)

#### **Stimulated Raman Scattering Microscopy**

![](_page_62_Figure_1.jpeg)

![](_page_62_Picture_2.jpeg)

![](_page_62_Picture_3.jpeg)

Sunney Xie

Wei Min

#### **Imaging Vibrational Energy of Chemical Bonds**

- Spatial resolution: ~300nm
- Chemical sensitivity: > µM
- 3D capacity: ~500µm in depth
- Imaging speed: 1µs/pixel

#### Imaging lipid molecules at sub-cellular resolution

![](_page_63_Figure_1.jpeg)

Fatty acid chain

![](_page_63_Picture_3.jpeg)

Wang et al, Nature Methods 2011

#### Imaging lipid molecules in a quantitative manner

![](_page_64_Figure_1.jpeg)

Wang et al, Nature Methods 2011 Yu et al, Biochim Biophys Acta 2014

#### Imaging lipid molecules with chemical specificity

![](_page_65_Figure_1.jpeg)

![](_page_65_Figure_2.jpeg)

Chen et al Chemphyschem 2018

#### Untargeted hSRS imaging of metabolic features in live worms

![](_page_66_Figure_1.jpeg)

Unpublished

Tao Chen

#### Untargeted hSRS imaging of metabolic features in live worms

![](_page_67_Figure_1.jpeg)

![](_page_67_Picture_2.jpeg)

Unpublished

#### Untargeted hSRS imaging of metabolic features during aging

![](_page_68_Picture_1.jpeg)

Unpublished

#### Power of new technology

Offer new lens to view new mechanisms.

![](_page_69_Picture_2.jpeg)

"to answer many of these fundamental biological questions, you just look at the thing!"

- Richard Feynman

Former Members: Bing Han (Fudan), Yong Yu (Xiamen), Andrew Folick (UCSF), Prasanna Ramachandran (Boston Children), Chih-Chun Lin (Cornell), Isaiah Neve (Norton Rose Fulbright), Peiwen Hu (Astellas Pharma), Yusi Fu (Creighton), Ahmet Yavuz (Known Medicine), Jessica Sowa (West Chester), Louis Mak (Baylor Genetics), Tim Mahoney (BCM), Holly Oakley (MD Anderson), Lucas Sanor (Yale), Ravi Medikonda (Johns Hopkins), Tyler Finamore (U of Notre Dame), Kuang Hu (UT Austin), Jie Ye (MD Anderson) **Collaborators:** Eric Ortlund (Emory), Christophe Herman (BCM), Jeff Tabor (Rice), Leng Han (Texas A&M), Sunney Xie (Peking), Ji-Xin Cheng (Boston), Rudi Zechner (Graz),Brett Graham (Indiana), David Moore (Berkeley),David Sabatini (MIT), Hongjie Li (BCM), Dan Fu (UW), Jin Wang (BCM)

**Mentors:** Dirk Bohmann (UR), Henri Jasper (Genentech), Gary Ruvkun (MGH)

![](_page_70_Picture_3.jpeg)