MODULE 3

INTRODUCTION TO HUMAN CELL MODELS OF AGING CORE

- SD-NSC HUMAN COHORT
- CELLULAR MODELS OF AGING

Co-Leaders:

Anthony Molina (UCSD)

Rusty Gage (Salk)

INTRODUCTION TO HUMAN CELL MODELS OF AGING CORE

- INTRODUCTION TO HUMAN CELL MODELS OF AGING CORE
- OVERVIEW OF NOVEL HUMAN LIFESPAN COHORT
- OVERVIEW OF FACILITY RESOURCES
- OVERVIEW OF CELL MODELS

WELL PHENOTYPED COHORT POWERS NOVEL CELL MODELS

- SD-NSC Cohort will represent the adult human lifespan and be extensively phenotyped for physical and functional metrics of biological aging
- Subject-specific fibroblast used to generate *iCell models* (capture age related phenotypes) and hiPSCs
- hiPSCs used to generated niche specific multi-cellular organoid models
- iCell and hiPSC models combined into novel hybrid models of human aging

WELL PHENOTYPED COHORT POWERS NOVEL CELL MODELS

What is "representative" or "normal" when it comes to aging?

Major Considerations:

-Healthy vs Normal

UC San Diego
School of Medicine

-Majority of patients over 65 present with multiple comorbidities

Inclusion	Exclusion
-Over 20yrs of age	-Are pregnant
-Able to consent and participate in the	-Diabetes (fasting glucose >126 mg/dl)
study using English	-Uncontrolled hypertension (BP > 140/90 mmHg)
-BMI ≥ 18.5 and ≤30 kg/m2.	-Heart or cardiovascular condition, including coronary artery disease, congestive heart failure,
-Weight stable for the prior 6 weeks	diagnosed abnormality of heart rhythm, atrial fibrillation, and/or a history of myocardial
-Normal cognitive function	infarction
-Willing and able to attend two in-	-Cancer or history of cancer
person study visits that will include	-Dementia or other conditions that may affect cognitive ability
vigorous exercise testing, blood draw,	-Sensory or physical impairment that would prevent participation
and skin biopsy.	-Parkinson's disease, multiple sclerosis, or other neurological condition, including a previous
-Willing to wear a wireless	stroke, which may be causing impaired muscle function or mobility
accelerometer (Actigraph GT3X) for 14	Medications and supplements that may interfere with measurements or biological outcomes
days	including, but not limited to: metformin, CoQ, glucocorticoids, and medications that may alter
	cardiac and hemodynamic responses to exercise
	-Respiratory disease
	-Answers "yes" to one or more questions in the American College of Sports Medicine's Physical
	Activity Readiness Questionnaire (PAR-Q) and/or report two or more risk factors for exercise
	testing

Defining Biological Age

-Physical function is among the best predictors of morbidity and all cause mortality

Pooled data from 9 cohort studies 34,485 total participants, 17 528 deaths

-Remaining years of life plotted by age group

10 yr survival Hazard ratio for every 0.1 m/s was 0.88

Informed Consent During the Covid-19 Pandemic

Cardiorespiratory Fitness (CPET)

-VO2 max is generally regarded as the best indicator of cardiorespiratory fitness.

-Safety

- -Persons with counterindications will be excluded from the study
- -Monitoring (Physician, Exercise Physiologists)-EKG, Blood Pressure

-Age/Ability appropriate

-Exercise Modalities

Short Physical Performance Battery

Limitations-Ceiling Effects

Dual-energy X-ray absorptiometry (DXA)

Bone Mineral Density

Body Composition

Physical Performance

School of Medicine

Gait Speed

- -6mwd (fast)
- -2.5 mwd (usual)

Leg Strength (Biodex)

Grip Strength

Visit 2-3

Actigraphy

monitoring rest/activity cycles 2 weeks

Muscle Composition

Size and Adiposity

Sensory Abilities

Cognition

Biological Samples

Limitations of SD-NSC Cohort

SD-NSC Biorepository Rolling Enrollment (2021-2023)

Blood

-Platelets

-WBCs

-Plasma

Cells

-Primary dermal fibroblast

-reprogrammed iPSCs (stem cells)

- -Small Size (N=40)
- -Inclusion/Exclusion Criteria
- -Diversity
 - -Sex
 - -Race/Ethnicity
- -Suitability of measures for broad age range

*Opportunities to expand

- # participants
- Representation
- Measurements
- Biospecimens
- -Longitudinal Follow Up

*Based on future grant funding

Mitochondrial Bioenergetics – Blood Cells

100

ATP-OCR

Time (min)

- High Throughput
- Intact cells
- 4 injection ports

Oroboros Oxygraph-2K

4B: 02 concer [µM]

- High resolution
- Intact and permeabilized cells/tissues
- Unlimited injections

www.predictivebiomarkers.org www.molinalab.com

0:58

1:10

Skin Punch Biopsy

SD-NSC Cell Models Core @Salk

WELL VERSED IN BEST PRACTICES FOR HUMAN CELL MODELS

Derive → Bank → Characterize → Model

WELL VERSED IN BEST PRACTICES FOR HUMAN CELL MODELS

Tiered Banking Ensures Prolonged Access to Cell Resources

ESTIMATED TIMELINE FOR CELL RESOURCES

Fibroblasts and hiPSCs available in late 2021

Early sharing through HCMA Core (SD-NSC Website)

Plan to deposit with national repository for broader distribution (NIA Repository at Coriell)

Protocols for basic fibroblast/hiPSC maintenance available mid 2021

Formal written and image-enhance protocols (SD-NSC Website)

SAMPLE OF IMAGE-ENHANCED PROTOCOLS

UC San Diego

School of Medicine

Coming soon to the SD-NSC Website

Healthy hPSCs have 4 key characteristics

SALK INSTITUTE FOR BIOLOGICAL STUDIES

INDUCED-CELL AND ORGANOID MODELS AT A GLANCE

iCell Models Maintain Age Related Phenotypes

INDUCED-CELL AND ORGANOID MODELS AT A GLANCE

School of Medicine

hiPSCs Recreate Niche Specific Dynamics Through Organoid Models

2D hiPSCs

Time

3D Organoids w/Multi-Cellular Structural Complexity

HYBRID MODELS COMBINE THE BEST OF BOTH WORLDS

Hybrid Models of Human Aging

Aged Niche in a Dish

ESTIMATED TIMELINE FOR CELL MODELS

Induced cell models available in 2022

Neurons (iN) and Vascular Endothial Cells (iVECs)

Detailed Protocols (SD-NSC Website)

Updates made available (SD-NSC Website)

Organoid and Hybrid Cell Models in 2023-2024

In development – HCMA Core partnering with key SD-NSC researchers (Rusty Gage)
Keep fingers crossed and stay tuned!

ESTIMATED TIMELINE FOR CELL RESOURCES AND MODELS

SD-NSC COHORT POWERS IT ALL...

Overview of Facility, Equipment, and Resources

- 2500 sqft High Volume TC facility
- 13 hoods, 24 incubators
- Vapor-phase cryostorage
- Established 2007
- Newly renovated in 2012

Overview of Facility, Equipment, and Resources

The Mission: Lower the bar to access advance state of the art human cell based models

- Equipment (Live Imaging, Metabolism)
- Validated Media and Reagents
- Training and Project Support

Overview of Facility, Equipment, and Resources

The Mission: Lower the bar to access advance state of the art human cell based models

- Equipment (Live Imaging, Metabolism)
- Validated Media and Reagents
- Training and Project Support

Overview of Facility, Equipment, and Resources

The Mission: Lower the bar for access to advanced human cell-based models

- Equipment (Live Imaging, Metabolism)
- Validated Media and Reagents
- Training and Project Support

Healthy hPSCs have 4 key characteristics

Overview of Facility, Equipment, and Resources

The Mission: Lower the bar for access to advanced human cell-based models

Equipment (Live Imaging, Metabolism)

Validated Media and Reagents

Training and Project Support

