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The Role of Neural Mechanisms Review
of Attention in Solving
the Binding Problem

less impaired on less attentionally demanding tasks
such as detecting a “popout” stimulus.

The physiological evidence for the binding problem
comes from studies of neurons in extrastriate visual
cortex of primates. One key observation is that different
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features of an object are processed to a certain extent by
different neurons within the visual system. For example,

For purposes of this review, we will define the binding some neurons in areas V2 and V4 respond selectively
problem as the problem of how the visual system cor- to the orientation of an object, independent of its color,
rectly links up all the different features of complex ob- whereas other V2 and V4 neurons respond selectively
jects. For example, when viewing a person seated in a to color, independent of shape, and cells selective for
blue car, one effortlessly sees that the person’s nose different features are often located in separate regions
belongs to his face and not to the car, and that the car, of both areas (Schein et al., 1982; Livingstone and Hubel,
but not the nose, is blue. To fully understand the solution 1983; Desimone et al., 1985; Tanaka et al., 1986b; Schein
to this problem requires a good neurobiological theory and Desimone, 1990; Ghose and Ts’o, 1997). Still other
of object recognition, which does not exist. We will neurons in the middle temporal area (MT) and the medial
therefore follow the lead of the computer engineer, who, superior temporal area (MST) encode various aspects
when asked to describe how he would write a computer of the motion of the stimulus (Desimone and Ungerleider,
program to recognize a chicken, replied, “first, assume 1986; Saito et al., 1986; Tanaka et al., 1986a, 1989; Rod-
a spherical chicken.” Thus, in this review we will make man and Albright, 1989; Stoner and Albright, 1992; Gee-
some assumptions that simplify the binding problem in saman and Andersen, 1996; Treue and Andersen, 1996;
order to appreciate how neural mechanisms of attention Bradley et al., 1998; Buračas et al., 1998; O’Keefe and
provide a partial solution. Movshon, 1998; Lisberger and Movshon, 1999). Logi-

cally, in order to identify the shape, color, and motion
of a stimulus, the visual system must somehow integrateEvidence for the Binding Problem
the activity of these different shape-selective, color-Before getting to the mechanisms of attention, it is useful
selective, and motion-selective neurons. When only oneto consider the psychological and physiological evi-
stimulus is present in the visual field, this is not a difficultdence that the binding problem even exists. The classic
problem because these features can only be assignedpsychological evidence comes from studies of “illusory
to one possible stimulus. However, when multiple stimuliconjunctions” (Treisman and Schmidt, 1982; Cohen and
appear together in the visual field, which is the typicalIvry, 1989; Ivry and Prinzmetal, 1991; Arguin et al., 1994;
situation in “real-world” scenes, the visual system mustPrinzmetal et al., 1995). In a typical experiment, human
assign the correct color, shape, and motion signals tosubjects are briefly presented with an array containing
each object.several different objects, such as letters of the alphabet,

If all neurons were highly selective for spatial location,shown in different colors. In one condition, subjects are
then illusory conjunctions might be avoided by inte-cued to attend to one of the letters, and in a comparison
grating features separately at each precise location incondition their attention is divided between the array
the visual field. For example, one might integrate colorand another object. In the former condition, with undi-
and shape only for neurons that share the same re-vided attention, the letter is perceived correctly. How-
ceptive field. However, as one moves through the ventral

ever, in the latter condition, with divided attention, sub-
visual stream that underlies object recognition (Unger-

jects often perceive the wrong combinations of letters
leider and Mishkin, 1982), the receptive field size of neu-

and colors, e.g., a red letter B and green letter C are rons increases steadily. Neurons in area V4, for example,
misperceived as a green B and a red C. That is, color typically have receptive fields that are several degrees
and shape are incorrectly bound. wide near the representation of the center of gaze, and

These studies argue that the binding problem exists neurons in the inferior temporal (IT) cortex have re-
and that attention helps to solve it. Consistent with this ceptive fields that can include the entire central visual
interpretation, damage to the parietal lobes, which are field, on both sides of the vertical midline (Desimone et
thought to be involved in allocating attention, can result al., 1984; Desimone and Schein, 1987; Gattass et al.,
in illusory conjunctions during free viewing. Patient R. M. 1988). These large receptive fields are presumably nec-
suffered two successive strokes that caused extensive essary to recognize large complex objects and may me-
bilateral parietooccipital lesions that spared the tempo- diate the ability to recognize objects of any size as the
ral and frontal lobes. He was severely impaired in atten- same, regardless of their retinal location. The ventral
tionally demanding visual tasks, and, when presented stream cortical areas with large receptive fields are
with two colored letters, he often misconjoined their known to play an important role in object recognition,
identities and colors, even after viewing for up to 10 s because recognition is greatly impaired when these ar-
(Friedman-Hill et al., 1995). By contrast, he was much eas are damaged (Cowey and Gross, 1970; Gross et al.,

1971; Dean, 1976; Ungerleider and Mishkin, 1982).
Similarly, information about the motion of visual pat-* To whom correspondence should be addressed (e-mail: reynolds@

ln.nimh.nih.gov). terns appears to be processed in areas within the dorsal
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same pattern of results in areas MT and MST. They
presented a preferred stimulus (a dot moving in the cell’s
preferred direction) together with a poor stimulus (a dot
simultaneously moving in the opposite direction) within
the receptive field. The responses elicited by the pair
were higher when attention was directed to the dot mov-
ing in the preferred direction, relative to when attention
was directed to the dot moving in the opposite direction.
A similar experiment recently conducted by Seidemann
and Newsome (1999) also found that when two stimuli
appear within the receptive field of an MT neuron, atten-
tion to the more-preferred stimulus increases responses,
relative to when attention is directed to the poorer stimu-

Figure 1. Average Response over Time of a Population of Stimulus- lus. However, the magnitude of these effects was much
Selective V4 Neurons to Two Stimuli inside the Classical Receptive smaller than that observed by Treue and Maunsell
Field (1996), suggesting that the degree to which attention is
When attention was directed to the poor stimulus (bottom line), able to modulate neuronal responses and the stage of
responses were lower than when attention was directed to the pre- processing at which this occurs may be task dependent.
ferred stimulus (top line).

One way to account for these results is to assume
that when attention is directed to one of two stimuli
within a cell’s receptive field, this causes the receptivestream that have large receptive fields. When a complex
field to constrict around the attended stimulus, leavingpattern, such as a plaid, moves through the visual field,
the unattended stimulus outside the receptive field (seeneurons in primary visual cortex respond selectively to
Figure 2). According to this interpretation, when atten-the direction of movement perpendicular to the lines
tion is directed to the preferred stimulus, the neuron isthat make up the plaid. However, some neurons in area
driven by the preferred stimulus, and its response isMT, an area with large receptive fields, respond ac-
therefore large. When attention is directed to the poorcording to the direction of motion of the plaid as a whole
stimulus, the preferred stimulus is now excluded from(Gizzi et al., 1983; Movshon et al., 1985; Rodman and
the receptive field, the cell is driven by the poor stimulus,Albright, 1989; Stoner and Albright, 1992). Position-
and its response is small. Thus, according to this inter-invariant object identity and global pattern motion are
pretation, attention solves the binding problem by in-just two of many examples of stimulus attributes that
creasing the effective spatial resolution of the visualappear to be represented in areas whose neurons have
system so that even neurons with multiple stimuli insidelarge receptive fields.
their large receptive fields process information onlyThe number of potentially erroneous feature conjunc-
about stimuli at the attended location.tions increases exponentially with the number of objects

Further support for the idea that attention increasesin a large receptive field (Tsotsos, 1990). As receptive
the spatial resolution of the visual system comes fromfields become larger and larger at each processing stage
two recent psychophysical studies. In one (Yeshurunof the ventral stream, there is therefore an increasing
and Carrasco, 1999), subjects were tested in three differ-number of erroneous feature bindings to rule out. Thus,
ent tasks that required them to make fine spatial discrim-the binding problem emerges as a necessary conse-
inations. In all three tasks, subjects responded morequence of the large receptive fields found in higher-
slowly and less accurately when the stimulus appearedorder areas.
at more peripheral locations, where receptive fields are
larger. And, in all three tasks, directing attention to theAttention and Shrinking Receptive Fields
location of the stimulus resulted in faster and more accu-A possible solution to the binding problem was sug-
rate performance. In a related study, Yeshurun and Car-gested by the study of Moran and Desimone (1985), who
rasco (1998) also found that attention paradoxically im-found that when two stimuli appear within the receptive
pairs performance in a task that requires processing offield of a neuron in either area V4 or inferior temporal
low–spatial frequency components of a stimulus. Sub-cortex, the response elicited by the pair depends on
jects were asked to detect the presence of a texture-which of the two stimuli is attended. They chose the
defined target, which required integration of informationshape and color of the stimuli such that one of the stimuli
at low spatial resolution. Unlike most visual tasks, per-elicited a strong response when it was presented alone
formance on this detection task is poorer at the fovea(the preferred stimulus), whereas the other elicited a
than it is at mid-peripheral locations, where spatial reso-very weak response when it was presented alone (the
lution is most appropriate for the task (DeValois andpoor stimulus). When attention was directed to the pre-
DeValois, 1988; Graham, 1989). Yeshurun and Carrascoferred stimulus, the pair elicited a strong response. How-
found that attention improved performance on this taskever, when attention was directed to the poor stimulus,
at peripheral locations, presumably by increasing thethe identical pair elicited a weak response, even though
spatial resolution of peripheral vision to better fit thethe preferred stimulus was still in its original location
task. Strikingly, attention significantly reduced perfor-(see Figure 1).
mance on the foveal task, where further improvementLuck et al. (1997a) and Reynolds et al. (1999) repli-
of spatial resolution would be expected to underminecated this result in area V4 and found it to hold in area

V2 as well. Treue and Maunsell (1996) have reported the performance.
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Figure 2. Schematic Diagram Illustrating How
Attention May Resolve Illusory Conjunctions

Each row of three panels shows a schematic
representation of the responses of a single
hypothetical neuron. The orientation-selec-
tive neuron appearing in the upper row re-
sponds to a vertical bar appearing anywhere
in its classical receptive field (dashed box
at left), regardless of its color. The neuron
appearing below responds selectively to a
dark bar, regardless of its orientation. When
attention is directed away from the receptive
field, and both stimuli appear together, both
neurons will be somewhat active, indicating
the presence but not the exact location of
their preferred features. Because the precise
location of the two stimuli is not represented
in the largely spatially invariant responses of
the neurons, the neuronal response cannot
unambiguously indicate whether the two fea-
tures belong to the same stimulus. When at-
tention is directed to one of the stimuli, both
neurons respond according to the features of
the attended stimulus. Since neurons re-
spond as though only the attended stimulus
were present, their activities can be unambig-
uously interpreted as reflecting features of a
common, attended object.

The Role of Competition neuronal responses in a behavioral paradigm that al-
lowed us to isolate automatic sensory processing mech-Desimone and Duncan (1995) have proposed that such
anisms from attentional ones (Reynolds et al., 1999).changes in spatial resolution may emerge as a result of
We first tested cells for competitive interactions in thecompetitive interactions between stimuli. According to
absence of attention. While the monkey attended to athis hypothesis, multiple stimuli in the visual field acti-
location far outside the receptive field of the neuron, wevate populations of neurons that engage in competitive
measured the response to a single reference stimulusinteractions, possibly mediated through local, intracorti-
within the receptive field. We then compared this re-cal connections. When subjects are instructed to attend
sponse to the response when a probe stimulus was(or choose voluntarily to attend) to a stimulus at a partic-
added within the receptive field. When the probe wasular location or with a particular feature, this generates
added to the field, the neuron’s response was drawnsignals within areas outside visual cortex. These signals
toward the response that would have been elicited if theare then fed back to extrastriate areas, where they bias
probe had appeared alone. For example, the response tothe competition in these areas in favor of neurons that
a preferred reference stimulus was typically suppressedrespond to the features or location of the attended stim-
when a poor stimulus was added as a probe, even whenulus. As a result, neurons that respond to the attended
the poor stimulus elicited small excitatory responsesstimulus remain active while suppressing neurons that
when it appeared alone. Symmetrically, the response ofrespond to the ignored stimuli. In other words, neuronal
the cell increased when a preferred probe stimulus wasresponses are now determined by the attended stimu-
added to a poor reference stimulus. Thus, the responselus, and any unattended stimuli are filtered out of their
of a cell to two stimuli in its field is not the sum of itsclassical receptive fields—an effective increase in the
responses to both but rather is a weighted average ofneurons’ spatial selectivity.
its response to each alone.

For example, imagine recording from a neuron that
To test how attention influenced this automatic com-

responds vigorously to stimulus A and fails to respond petitive mechanism, we then had the monkey attend to
to stimulus B. If attention is directed to stimulus A, this the reference stimulus. The effect of attending to the
will bias the competition in favor of the population of reference stimulus was to almost precisely eliminate
cells that normally responds to A, and the cell being the excitatory or suppressive effect of the probe. If, in
recorded will remain active. If attention is then directed the absence of attention, the probe stimulus had sup-
to stimulus B, the competing population will win, and pressed the response to the reference, then attending
the cell being recorded will be suppressed, along with to the reference restored the cell’s response to the level
the other members of its population. In retinotopically that had been elicited when the reference was presented
organized areas, such as area V4, this competition is alone (Figure 3A). Conversely, if the probe stimulus had
thought to be strongest for cells located near to one increased the cell’s response, attending to the reference
another in the cortex, which therefore share similar re- stimulus drove the response down to the level that had
ceptive fields. been recorded when the reference was presented alone

We recently tested this idea that attention works (Figure 3B). Thus, the effect of attention was to modulate
the underlying competitive interaction between stimuli.through competitive processes by recording V2 and V4
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Figure 3. Responses of Single Neurons in Area V2, Showing that Figure 4. fMRI Signals in the Human Show Sensory Interactions and
the Attended Stimulus Controls the Response of the Neuron Attention Effects that Scale with the Size of Receptive Fields at
(A) The dotted line at the top shows the response of a single V2 Successive Cortical Areas
neuron to a stimulus of its preferred orientation and color. The solid (A) Task. Subjects fixated a spot while stimuli appeared either asyn-
line at the bottom shows the response to a poor stimulus. The chronously (top four images) or simultaneously (bottom four im-
dashed line in the middle shows the response when the two stimuli ages). The total amount of time each stimulus appeared was con-
are presented together, with attention directed away from the re- stant. Subjects either performed an attentionally demanding task
ceptive field. The addition of the poor stimulus strongly suppresses at fixation or attended to one of the four stimuli.
the response elicited by the preferred stimulus. When attention is (B) fMRI signals. In area V1 (top images), where receptive fields
directed to the preferred stimulus, this suppression is eliminated, are too small to include more than one stimulus, the presence of
and the neuron responds as though the poor stimulus were absent. additional stimuli did not suppress neuronal responses, and atten-
(B) Here, the response of another V2 neuron to a poor stimulus tion had very little effect. However, in area V4 (bottom images),
(bottom dotted line) is increased (middle dashed line) by the addition whose receptive fields are large enough to include multiple stimuli,
of a preferred horizontal stimulus. When attention is directed to presenting the stimuli simultaneously caused a suppressed re-
the poor stimulus, the cell’s response is reduced to a level that is sponse. This is illustrated in the reduced magnitude of the two
comparable to its response to the poor stimulus, alone. middle peaks (labeled “SIM SIM”) in the lower left image. When

attention was directed to one of the stimuli (lower right image, time
period labeled in blue), this suppression was largely filtered out.Given the close similarities between attention effects

in the dorsal and ventral streams, it seems likely that
both streams use the same underlying competitive cir- experiments in humans support the idea of attentional

modulation of an underlying sensory competition. Kast-cuit. Consistent with this possibility, studies of neuronal
responses to multiple stimuli have found opponent di- ner et al. (1998) compared the average fMRI signal elic-

ited by a stimulus when it was presented alone versusrection suppression in areas MT and MST of the dorsal
stream (Qian and Andersen, 1994; Recanzone et al., the signal elicited when the same stimulus appeared

simultaneously with other stimuli (Figure 4A). They found1997; see also Mikami et al., 1986). Responses to stimuli
moving in a nonpreferred direction are increased by the that when attention was directed away to another loca-

tion, the presence of the additional stimuli reduced theaddition of a second stimulus moving in the preferred
direction in the receptive field, and, conversely, re- strength of the fMRI signal in the human analogs of

monkey V4 and TEO, areas whose receptive fields aresponses to preferred stimuli are suppressed by the addi-
tion of a stimulus moving in the null direction. It remains large enough to encompass multiple stimuli (Figure 4B).

This suppressive effect was minimized when stimulifor future studies to confirm that attention modulates
this underlying competitive circuit. were separated from one another in space, consistent

with the idea that competition is greatest for stimuliRecent functional magnetic resonance imaging (fMRI)
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occupying the same receptive field. Suppression was (1993), and Luck et al. (1997a) have found either no effect
of attention on the response to a single stimulus orweakest in primary visual cortex, whose smaller re-

ceptive fields would rarely be expected to process infor- changes in response that were nearly equally likely to
be increases as decreases.mation from more than one of the stimuli, resulting in

minimal interactions between stimuli. When subjects A possible explanation for this puzzle has recently
been reported by Reynolds et al. (1996, Soc. Neurosci.,were instructed to attend to stimuli at one of the loca-

tions, this eliminated most of the suppressive effect of abstract; 1997, Assoc. Res. Vis. Ophthalmol., abstract),
who found that V4 neurons have increased contrast sen-the distractor stimuli, consistent with the physiological

results in monkeys. sitivity when attention is directed to a position within
the receptive field (Figure 5B). Neurons responded to
faint attended stimuli that failed to elicit a responseEvidence for the Attentional Bias
when attention was directed away from the receptiveThese experiments provide support for the idea that
field. On average, attention caused cells to respond asillusory conjunctions are resolved when attentional feed-
though the luminance contrast of the stimulus had beenback signals bias an underlying competitive circuit,
increased by 22%. This increased sensitivity resulted incausing neurons to respond exclusively to the attended
large increases in the neuronal response to low-contraststimulus. Possibly the most direct physiological evi-
stimuli. The effect of attention to a single stimulus insidedence for this predicted bias was reported by Luck et
the receptive field was greatly reduced for high-contrastal. (1997a), who found that attending to a position within
stimuli, which nearly saturated the neuronal responsethe receptive field of a neuron increased its spontaneous
even in the absence of attention. Nicholas et al. (1996,firing rate. The spontaneous activity of V2 and V4 neu-
Soc. Neurosci., abstract) found that this increase in sen-rons increased by 30%–40% when attention was di-
sitivity was also reflected in enhanced responses torected to the location of the receptive field, even when
texture-defined stimuli. As with luminance contrast, thethe field contained no stimulus. A recent fMRI study
effect of attention to a single stimulus was diminishedin humans has found similar evidence for a sustained
for texture-defined stimuli that were well segregatedincrease in activity with attention in the absence of visual
from their backgrounds. Together, the results indicatestimulation, with the increases occurring at the retino-
that although the bias in favor of an attended stimulustopic locus of the attended location in the visual field
can easily be detected with stimuli that are low contrast,(Kastner et al., 1999). This effect was found in several
the effect of the bias may be missed if the response ofcortical visual areas of the dorsal and ventral streams.
the cells has already been saturated by highly salientIn the physiological study of Luck et al. (1997a), the shift
stimuli that are easily discriminated from their back-in firing rate was largest when the monkey attended to
grounds. Thus, variations in stimulus contrast, in addi-the “hot spot” of the receptive field, where stimuli elic-
tion to variations in task and task difficulty, may helpited the strongest response, and was smallest when
explain the variability across studies in the effects ofattention was directed toward the edge of the field.
attention to single stimuli. One possible way of concep-Thus, consistent with its putative role in selecting out
tualizing the effect of attention on single stimuli is illus-one of several stimuli from within the receptive field,
trated in Figure 5C. Orientation tuning is largely invariantthe attentional signal that gives rise to this change in
to changes in contrast (Skottun et al., 1987). For stimulispontaneous firing rate has a higher spatial resolution
that are below saturation contrast, an increase in physi-than the receptive field.
cal contrast will result in a gain multiplication of theThe bias in favor of an attended stimulus or location
orientation tuning curve. Similarly, a leftward shift ofis also evidenced by an increase in response to a stimu-
the contrast–response function resulting from increasedlus at an attended location, which has been found in
neuronal sensitivity with attention also predicts a gainmany, but not all, physiological studies. With just a single
multiplication of the orientation tuning curve, which hasstimulus inside the receptive field, Spitzer et al. (1988)
been reported by McAdams and Maunsell (Figure 5C).found that when animals were required to perform an
Although they did not test stimuli across a range ofattentionally demanding task using that stimulus, re-
contrasts in that study, the contrast used may have beensponses of neurons in area V4 increased by 18%, com-
below the saturation level of the cells.pared to when the monkey’s attention was directed out-

side the field. More recently, Connor et al. (1996) have
reported that V4 responses to stimuli appearing within Nonspatial Attention

In the cases considered above, attention was directedthe receptive field are sometimes enhanced when the
monkey attends to a location just outside the receptive to a given location, and the features of the object at that

location could be bound together by filtering unattendedfield. McAdams and Maunsell (1999) have found V4 re-
sponses to be increased by 26% when monkeys dis- objects from the receptive fields of extrastriate neurons.

How can attention solve the binding problem when thecriminated the orientation of a counterphase grating
within the receptive field, as compared to the response location of the object of interest is unknown in advance,

e.g., when searching for a face in a crowd? In a recentelicited by the same stimulus when the monkey discrimi-
nated the color of a stimulus appearing outside the re- study, Chelazzi et al. (1998) found that when monkeys

search for an object in an array based on its features,ceptive field (Figure 5A).
Not all studies have found consistent enhancement this can modulate receptive fields of neurons in inferior

temporal cortex in a manner similar to what happens inof responses with attention to a single stimulus inside
the receptive field, however. Moran and Desimone spatially directed attention (see Figure 6). In this task,

monkeys viewed a cue stimulus, followed by a brief(1985), Haenny et al. (1988), Maunsell et al. (1991), Motter
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Figure 5. Gain Multiplication and Increased
Sensitivity with Attention in Area V4

(A) McAdams and Maunsell (1999) found that
attention caused a multiplicative increase in
the orientation tuning curve.
(B) Reynolds et al (1996, Soc. Neurosci., ab-
stract; 1997, Assoc. Res. Vis. Ophthalmol.,
abstract) found that attention caused an in-
crease in V4 neurons’ contrast sensitivity, as
reflected in a leftward shift of the contrast–
response function.
(C) A possible way to reconcile the two find-
ings. The change in response resulting from
changes in orientation and contrast are or-
thogonal. Thus, an increase in contrast sensi-
tivity (leftward shift in the contrast–response
function) will result in a multiplicative increase
in the tuning curve.

delay, after which an array of stimuli (the search array) frontal cortex shows elevated spontaneous responses
appeared within the neuron’s receptive field. The mon- that encode remembered spatial locations and remem-
keys’ task was to indicate whether or not a target match- bered objects (Wilson et al., 1993; Rainer et al., 1998).
ing the cue stimulus was present in the array. The posi- It also has anatomical connections by which it could
tions of the stimuli in the search array were selected at transmit these signals to appropriate dorsal and ventral
random, so the monkey could not know where the target stream areas (Barbas, 1988; Barbas and Pandya, 1989;
would appear, if it appeared at all. During the delay Ungerleider et al., 1989). Parietal cortex also encodes
period, many inferior temporal neurons had a higher remembered spatial locations in a form that could be
baseline firing rate when the cue stimulus was a pre- read out as a spatial biasing signal and has the requisite
ferred stimulus for the cell than when it was a poor anatomical connections to do so. Stimuli appearing at
stimulus. This is analogous to the increase in baseline an attended location are preferentially represented in
firing rates found in other studies when spatial attention parietal cortex (Bushnell et al., 1981; Gottlieb et al.,
was directed to a cell’s receptive field (Luck et al., 1998), and different parts of parietal cortex provide a
1997a), and it is evidence for a bias in favor of neurons variety of different spatial reference frames that would
representing the target stimulus. Within 150–200 ms

be helpful in directing attentional feedback signals toafter the search array appeared, the neuron’s response
behaviorally relevant locations in space (reviewed byincreased or decreased, depending on whether the cue
Andersen, 1997; Colby and Goldberg, 1999). Patientswas, respectively, a preferred or a poor stimulus for the
with bilateral parietal lesions have difficulty binding to-cell. That is, shortly after the onset of the search array,
gether object features, despite the fact that these fea-the cell responded primarily to the target stimuli and
tures are known to be processed primarily outside ofresponses to nontarget stimuli were suppressed. Thus,
parietal cortex. This would be expected from a lesionattention to an object feature apparently has effects on
that eliminates an important source of signals that biascompetitive interactions that are similar to those ob-
competitive interactions within the cortical areas thatserved with attention to a spatial location.
encode these features. Consistent with this, recent fMRI
studies (Corbetta et al., 1993, 1995; Nobre et al., 1997;Likely Sources of the Biasing Signal
Kastner et al., 1999) have also found the superior parietalPrefrontal and parietal cortex have a number of proper-
lobule in the human to be highly active during a spatialties that implicate them as possible sources of task-

dependant biasing signals in posterior visual areas. Pre- attention task.
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Figure 6. Responses of IT Neurons during
Memory-Guided Search

(A) Task. Monkeys fixated a spot on a com-
puter screen and were shown a central cue
(here, either the flower or the cup). After a
delay, two (or more) stimuli appeared within
the receptive field, and the monkey had to
saccade to the stimulus that had appeared
earlier as the cue. Sometimes (top four im-
ages), the cue was a preferred stimulus for
the cell (the flower) and the monkey had to
saccade to the flower. On separate trials
(lower four images), the cue was a poor stimu-
lus (the cup) and the monkey had to saccade
to the cup.
(B) Neuronal responses. During the delay pe-
riod, IT neurons showed an elevated baseline
activity that reflected the cue stored in mem-
ory. The spontaneous rate was higher on tri-
als in which the cue was a preferred stimulus
for the cell, relative to trials when the cue
was a poor stimulus. After the search array
appeared, the response separated, increas-
ing or decreasing depending on whether the
cue was, respectively, a preferred or poor
stimulus for the cell. This separation occurred
well before the onset of the saccade, which is
indicated by the vertical bar on the horizontal
axis.

Stimulus Salience Helps Ameliorate Soc. Neurosci., abstract) supports this hypothesis. We
reasoned that if salience acts as a bottom-up bias on thethe Binding Problem

The picture that emerges from these considerations is same competitive mechanisms that appear to subserve
attentional selection, then neuronal responses to a pairthat attentional feedback from areas such as prefrontal

and parietal cortex eliminates illusory conjunctions by of stimuli should be dominated by the most salient stim-
ulus within the receptive field. To test this, two stimulibiasing competition in favor of stimuli appearing at the

attended location or in favor of the searched-for object. were presented within the receptive fields of V4 neurons,
while the monkey attended away to a location outsideThe finding that attention causes extrastriate neurons

to respond as though the salience of the stimulus had the receptive field. We varied the relative contrast of the
two stimuli and compared the response elicited by thebeen increased (Nicholas et al., 1996, Soc. Neurosci.,

abstract; Reynolds et al., 1996, Soc. Neurosci., abstract; pair to the responses elicited by the two stimuli pre-
sented individually. The neuron’s response to the pair1997, Assoc. Res. Vis. Ophthalmol., abstract; Gottlieb

et al., 1998) raises the intriguing possibility that physical was similar to its response to the higher-contrast stimu-
lus presented alone. That is, the cell responded assalience itself may also play a part in resolving the bind-

ing problem. If high salience biases the same competi- though the low-contrast stimulus were not present. This
result was most striking for highly selective cells, wheretive mechanisms as does attention, this should cause

neurons to “lock on to” whatever stimulus is most sa- increasing the contrast of the poorer stimulus signifi-
cantly reduced the response to the pair, despite the factlient. This could partially ameliorate the binding problem

for unattended stimuli by setting the visual system to that the poor stimulus alone elicited a small excitatory
response. Consistent with the hypothesis that attentionbind together the features of the most salient stimulus by

default. That is, when attention is not actively engaged in and high salience bias the same competitive mecha-
nisms, the two effects were additive. When the monkeyprocessing a stimulus within the scene, or when atten-

tion is directed away from the receptive field, the most directed its attention to the higher-contrast stimulus,
the neuron’s response was independent of the presencesalient element in the scene might dominate neuronal

responses. of the lower-contrast, unattended stimulus. Thus, nor-
mal variations of salience in the visual environment mayA recent experiment of Reynolds and Desimone (1997,
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Figure 7. Salience Can Emerge from Grouping

(A) A contour of nearly collinear line elements pops out of a back-
ground composed of randomly oriented line elements. Figure 8. A Speculative Hypothesis about Illusory Conjunctions and
(B) If the elements connecting end-to-end are not roughly collinear, Perceptual Grouping
they do not form a salient grouping.

(A) Suppose that when elements form a perceptual group, such as
this row of stimuli, receptive fields shrink around the group.
(B) According to this hypothesis, the vertical and horizontal line

serve to partially ameliorate the binding problem even elements fall within common receptive fields. As a result, neuronal
for unattended objects, by transferring control over neu- response will be invariant across positions within the group, and

the features may be misconjoined to form a plus.ronal responses to the most salient elements of the
(C) When the two elements appear within separate groups, we as-scene.
sume that they will not fall within a common receptive field and willClearly, this is only a partial solution to the general
not be misconjoined. Prinzmetal (1981) found that illusory conjunc-binding problem. Almost all physiological studies to date tions are more likely among elements within a group than among

have used well-isolated, simple stimuli that could be elements in separate groups.
segregated out from the background on the basis of (D and E) Control conditions in which illusory conjunctions cannot

occur because the plus is actually present (D) or because the twochanges in local luminance contrast. This leaves unre-
features were of the same orientation (E).solved the difficult question of what actually competes

for processing—is it local luminous flux, higher-order
object features, or entire integrated “objects”? This diffi-
cult aspect of the binding problem remains unresolved, likely to influence higher-order extrastriate neurons in

much the same way as salience arising directly frombut studies of perceptual grouping suggest one way
in which grouping principles could play a role. When high luminance contrast and texture popout. It remains

to be seen whether perceptual groups defined by factorsindividual elements form a perceptual group, they gain
salience and stand out from their background, as illus- such as collinearity, closure, similarity, symmetry, prox-

imity, common motion, and common onset will turn outtrated in Figure 7. In the upper panel, line elements that
are roughly collinear cohere into a contour that stands to have enhanced control over neuronal responses in

higher-order areas with large receptive fields.out from the background, like a snake in the grass. The
lower panel also includes a set of elements that connect This is clearly a speculative hypothesis, but it does

make an interesting prediction. We have presented evi-end-to-end, but this grouping does not pop out because
the elements are not collinear. dence that illusory conjunctions emerge as a result of the

spatial uncertainty that results from the large receptiveKapadia et al. (1995) found an analogous effect of
grouping on the responses of neurons in striate cortex. fields found in extrastriate cortex. If, as a result of the

more salient representation of groups in earlier corticalWhen a line element within the receptive field is pre-
sented together with additional, collinear elements out- areas, higher-order extrastriate receptive fields effec-

tively shrink around perceptual groups (see Figure 8A),side the receptive field, the responses of many striate
neurons are enhanced. Changing the spatial relation- this would separate elements from different groups into

separate receptive fields. Illusory conjunctions shouldships between elements in ways that break up this per-
ceptual group (such as introducing an intervening per- therefore be more likely between features appearing

within a perceptual group than between equally spacedpendicular element, separating the elements, or making
them noncollinear) reduces or eliminates this enhance- features appearing in separate perceptual groups.

This is exactly what was found in a study conductedment. Salience from perceptual grouping, represented
by increased responses of neurons in striate cortex, is by Prinzmetal (1981). Arrays of circles appeared briefly,
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followed by a mask. They were either arranged to form feedback. Directing attention to a higher-contrast stimu-
lus causes it to exert even greater control over the neu-two columns (as in Figure 8B) or two rows (as in Figure
ronal response, while attending to the lower-contrast stim-8C). The arrays typically included a vertical and a hori-
ulus counteracts the relative contrast bias. This enableszontal line segment, either appearing at the same loca-
the neuron to respond to an attended low-contrast stimu-tion, to form a plus (as in Figure 8D), or appearing at
lus, even in the presence of a high-contrast distractor.separate locations (as in Figures 8B and 8C). The two

Sixth, attention has the capacity to modulate the re-line segments could either appear within the same per-
sponses of neurons at a spatial scale that is smallerceptual group (as in Figure 8B) or in separate groups (as
than the scale of an individual receptive field. Whenin Figure 8C). Prinzmetal measured how often subjects
multiple stimuli appear within the receptive field, atten-misconjoined the vertical and horizontal line segments
tion causes the neuron to selectively process one stimu-to form an illusory plus. In a comparison condition (see
lus within the receptive field while filtering out others.Figure 8E), the two line segments were of the same
This high spatial resolution is also reflected in the atten-orientation, so they could not form an illusory conjunc-
tionally induced increases in spontaneous firing rate,tion. Subjects often incorrectly reported seeing a plus
which vary in magnitude as a function of precisely wheresymbol when the line segments were perpendicular to
in the receptive field attention is directed.one another. Despite the fact that the physical separa-

Seventh, the effect of attention depends on spatialtion of the two line segments was identical, subjects
separation of stimuli. Two stimuli can be placed farwere significantly more likely to form illusory conjunc-
enough apart that they will fall within separate receptivetions between elements within a perceptual group than
fields in one cortical area, say V2, while remaining closewhen they appeared within separate groups.
enough together to fall within a common receptive fieldAs described earlier, sensory interactions and atten-
at a subsequent area. Here, the effect of attentiontion effects are greatest when two stimuli appear within
changes from simple enhancement to a shift of control,a common receptive field. This provides a way to probe
as illustrated in Figure 9. Thus, at one stage, attentionthe hypothesis that receptive fields shrink around salient
serves to boost the strength of the stimulus-evokedperceptual groups. It will be interesting to see whether
response, separating it from one form of noise: sponta-

competitive sensory interactions and associated atten-
neous activity. At the subsequent stage, attention filters

tional modulations will turn out to be greater among
out a second type of noise: the signal that is elicited by

elements within a perceptual group than among ele-
the unattended stimulus.

ments in separate groups.

A Model Based on Biased Competition
One possible model that satisfies these constraints isBiological Constraints on Models
illustrated in Figure 10. The model assumes that whenThe results reviewed above provide several constraints
two stimuli appear within the visual field, they will, aton models of the circuitry underlying attentive visual
some stage of cortical processing, activate separateprocessing, and hence provide insight into some of the
populations of neurons. The two circles at the bottom

neural mechanisms involved in solving the binding prob-
of the figure represent these two input populations. The

lem. First, with attention directed away from the re-
circuit is assumed to be repeated at each stage of the

ceptive field, the effect of adding a second stimulus
cortical hierarchy, but to fix ideas, let us suppose these

inside the receptive field is to draw the neuron’s re- input populations are in area V2. If the stimuli appear
sponse toward the response elicited by the added stim- close enough to one another, they will activate input
ulus alone. If we change the identity of the second stimu- populations that project to a common output neuron in
lus so that it elicits a smaller response when presented the subsequent stage of cortical processing (say, V4).
alone, it typically becomes proportionally more sup- The circle at the top of the figure is intended to represent
pressive. this output neuron. Each input population is assumed

Second, neuronal responses are biased toward the to provide both excitatory and inhibitory drive to the
more salient stimulus. If a preferred stimulus is paired output neuron, through inhibitory interneurons, which
with a poor excitatory stimulus, the suppression caused are not shown in the figure. The response of the output
by adding the poor stimulus typically increases with the neuron is assumed to depend on the ratio of excitatory
contrast of the poor stimulus. to inhibitory drive from the input populations. The selec-

Third, when attention is directed to a location within tivity of the output neuron for the two stimuli therefore
the receptive field, this increases the neuron’s sensitivity depends on the strength of excitatory and inhibitory
to stimuli appearing at that location, as reflected in the inputs projecting from each input population. The stimu-
cell’s ability to respond to low-salience stimuli that do lus whose input population provides proportionally more
not elicit a response when unattended. excitatory input will elicit a relatively stronger response

Fourth, when multiple stimuli appear together, at- in the output neuron.
tending to one of them causes the neuronal response The model accounts for the observed relationships
to be biased toward the response that would have been between selectivity, sensory interactions, and attention
elicited if the attended stimulus had appeared alone. effects, as follows. When the two stimuli appear to-
Thus, attending to the poorer of two stimuli typically gether, their excitatory inputs are assumed to be addi-
reduces the neuronal response to the pair. tive, as are their inhibitory inputs. Therefore, when a

Fifth, the control bias arising from differences in rela- second stimulus is added to the receptive field, the
output neuron’s response will shift toward the responsetive salience adds to the bias arising from attentional
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Figure 9. Dependence of Attentional Modulation on Receptive Field
Size

A qualitative change in the effect of attention takes place when
information passes from a cortical area with receptive fields too Figure 10. One Possible Implementation of the Biased Competition
small to include both stimuli to a successive cortical area with re- Model
ceptive fields that are large enough to encompass both stimuli. At

The circle on top represents the neuron being recorded, whosethe bottom of the figure, we show the schematic responses of two
firing rate is designated by the variable y. The two circles belowneurons in an area with small receptive fields. The hatched stimulus
represent populations of “input” neurons that respond to the refer-on the left falls within the receptive field of the neuron whose re-
ence and probe stimuli, respectively, and that project to the uppersponse is illustrated on the left. The solid stimulus on the right falls
neuron. The average responses of the input populations are desig-within the receptive field of the other neuron, on the right. For both
nated x1 and x2. Black lines represent the excitatory projections fromof these hypothetical neurons, the response is magnified when atten-
each input population to the measured cell, and gray lines indicatetion is directed toward the stimulus within the receptive field. The larger
the inhibitory projections, which are assumed to depend on inhibi-box above illustrates the larger receptive field of a higher-order neuron.
tory interneurons (not shown in figure). The variables w1

1 and w2
1

Here, the two stimuli fall within a common receptive field. When atten-
stand for the magnitudes, or weights, of the excitatory projectionstion is directed to the cell’s preferred stimulus (the hatched bar), this
from the two input populations, while w1

2 and w2
2 stand for thecauses an increase in response. However, when attention is directed

weights of the inhibitory projections. Equations 1 and 2 state, re-to the poor stimulus, this results in a reduced response.
spectively, that the total excitatory and inhibitory inputs to the cell
are the responses of the input populations, weighted, respectively,
by their excitatory and inhibitory weights. Equation 3 describes theelicited by the second stimulus alone, as observed ex-
change in the response of the output neuron over time. Equation 4

perimentally. If the physical salience of one of the stimuli describes the equilibrium response of the output neuron, which
is increased, this is assumed to increase the magnitude depends on the total mix of excitatory and inhibitory input. The
of the response elicited in the input population, and the model is further described in Reynolds et al. (1999).
output neuron’s response will shift toward the response
that would be elicited by the more salient stimulus alone.
Attention is assumed to act in an analogous manner, by The effect of attention is unmasked by the presence

of a second stimulus inside the receptive field becauseincreasing the efficacy of synapses projecting from the
neuronal population activated by the attended stimulus. attention must now filter out the large signals elicited

by the competing stimulus. Increasing the efficacy ofThus, attention will increase contrast sensitivity at the
attended location. This change of synaptic efficacy will inputs from the attended population causes the mix of

excitatory and inhibitory inputs, and thus the outputalso increase the output neuron’s sensitivity to sponta-
neous activity of afferent neurons, resulting in a baseline neuron response, to be dominated by the attended stim-

ulus. Input strength can be adjusted by either a changeshift. The spatial selectivity of this baseline shift follows
from the spatial specificity of the projections from affer- in synaptic efficacy or a change in the strength of re-

sponse in the input population, so the effects of attentionent neurons to the output neuron. The model accounts
for the finding that attention effects are minimal for high- and relative contrast are additive. The high spatial reso-

lution of attentional modulation arises because the inputcontrast stimuli, because at high contrast the response
of the output neuron is already saturated by strong excit- neurons, whose synapses are assumed to be modulated

by attention, have the requisite fine spatial resolution.atory and inhibitory inputs, and further increases of input
strength will not cause further increases in response. When the two stimuli appear together so that they both
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appear within the receptive field, a change in the efficacy Conclusions
Findings from neurophysiology, psychophysics, andof synapses projecting from one input population will

filter the nonattended stimulus out of the V4 receptive fMRI all converge on a common conclusion about the
role of attention in solving one aspect of the bindingfield.

The biased competition model provides a unified problem: illusory conjunctions. When multiple unat-
tended stimuli appear within the receptive field of anframework within which to think about attention and

its role in resolving the binding problem. However, the extrastriate neuron, the neuronal response cannot un-
ambiguously be associated with any one stimulus, andimplementation sketched above is only one of a number

of possible models that satisfy the constraints derived it is this ambiguity that leads to illusory conjunctions.
Attentional mechanisms eliminate illusory conjunctionsfrom the neurophysiological literature on attention. Among

the existing alternatives are models that implement by filtering out unattended stimuli whose features could
be misconjoined with those of the attended stimulus.competitive interactions using lateral inhibitory connec-

tions and assume that the attentional bias is mediated This selection process occurs in several stages and
depends on attentionally induced increases in the effec-by a direct excitatory signal or by triggering synchronous

discharge among cells whose receptive fields overlap tive salience of the attended object in earlier stages of
processing, where it appears alone within a receptivewith the focus of attention (see, e.g., Koch and Ullman,

1985; Anderson and Van Essen, 1987; Niebur et al., 1993; field. As signals from multiple stimuli progress forward
into higher-order areas with larger receptive fields, stim-Olshausen et al., 1993; Ferrera and Lisberger, 1995;

Grossberg, 1995, 1999a, 1999b; Stemmler et al., 1995; uli compete to control neuronal responses. The added
strength of the signals from the attended stimulus re-Pouget and Sejnowski, 1997; Borisyuk et al., 1998). Addi-

tional experiments will be necessary to further constrain solves this competition in its favor. As a result, the re-
sponses of higher-order neurons with large receptivethe set of possible models.
fields encode only the attended stimulus, implicitly bind-
ing together its features. In the absence of attentional
control, a highly salient stimulus (e.g., based on higherRelationship between Our Proposal and Other

Theories of Illusory Conjunctions luminance or perceptual grouping principles) may also
bias the same competitive mechanisms, helping to re-The explanation we have proposed for the role of atten-

tion in resolving illusory conjunctions is related to the solve illusory conjunctions among unattended objects.
Finally, all of these mechanisms for attentional selectionFeature Integration Theory (FIT) proposed by Treisman

and Gelade (1980) (see also Treisman and Schmidt, and salience operate in concert within multiple cortical
areas of dorsal and ventral visual processing streams,1982; Treisman, 1996). Like FIT, our explanation de-

pends on the proposition that illusory conjunctions arise implicitly binding together the features encoded by dif-
ferent neurons throughout extrastriate cortex.from the decomposition of visual stimuli into their con-

stituent features and that attention is necessary to avoid
Acknowledgmentsillusory conjunctions of the features.

Our proposal differs from FIT in several ways. First,
We thank L. Chelazzi, V. Ferrera, P. Fries, S. Kastner, and A. Rossiwe propose that illusory conjunctions arise specifically
for helpful comments on the manuscript.

because of the spatial uncertainty that results from the
large receptive fields found in higher-order visual areas, References
and that attention resolves this uncertainty by biasing
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Krüger, L.E. (1984). The category effect in visual search depends Levick, W.R., and Zacks, J.L. (1970). Responses of cat retinal gan-
on physical rather than conceptual differences. Percept. Psy- glion cells to brief flashes of light. J. Physiol. (Lond.) 206, 677–700.
chophys. 35, 558–564. Levitt, J.B., and Lund, J.S. (1997). Contrast dependence of contex-
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