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SUMMARY

Previous studies have shown that neurons in area V4
are involved in the processing of shapes of interme-
diate complexity and are sensitive to curvature.
These studies also suggest that curvature-tuned
neurons are position invariant.We sought to examine
the mechanisms that endow V4 neurons with these
properties. Consistent with previous studies, we
found that response rank order to the most- and
least-preferred stimuli was preserved throughout
the receptive field. However, a fine-grained analysis
of shape tuning revealed a surprising result: V4 neu-
rons tuned to highly curved shapes exhibit very
limited translation invariance. At a fine spatial scale,
these neurons exhibit local variation in orientation.
In contrast, neurons that prefer straight contours
exhibit spatially invariant orientation-tuning and
homogenous fine-scale orientation maps. Both of
these patterns are consistent with a simple orienta-
tion-pooling model, with tuning for straight or curved
shapes resulting, respectively, from pooling of
homogenous or heterogeneous orientation signals
inherited from early visual areas.

INTRODUCTION

Visual shape information is processed in the ventral cortical

pathway, which progresses from the primary visual cortex (V1),

the secondary cortex (V2), intermediate areas (V3/V4), and finally

onto the inferotemporal (IT) cortex (Felleman and Van Essen,

1991). In the earlier stages, shape is encoded primarily through

local orientation in V1 (Hubel and Wiesel, 1959, 1965, 1968)

and combinations of orientations in V2 (Anzai et al., 2007; Tao

et al., 2012). At the final stages in IT, cells have been shown to

be selective for complex objects like faces (Desimone et al.,

1984; Tanaka et al., 1991; Tsao et al., 2006). How this transfor-

mation is achieved remains largely unknown. In addition, the

selectivity to complex features becomesmore invariant to simple

stimulus transformations such as size or spatial position as one

traverses the ventral cortical hierarchy (Rust and Dicarlo,

2010). To understand how contours of objects are integrated

into coherent percepts in the later stages, a detailed understand-

ing of shape processing in intermediate stages like V4 is critical.
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Previous studies (Pasupathy and Connor, 1999, 2001)

demonstrate that neurons in monkey visual area V4 are

involved in the processing of shapes of intermediate

complexity and are sensitive to curvature. These studies

showed that V4 neurons responded more strongly to a

preferred stimulus, as compared to a null stimulus, throughout

the receptive field (RF)—a form of translation invariance.

However, little is known about the mechanisms that underlie

shape tuning of neurons in area V4 or about the degree to

which translation invariance depends on stimulus com-

plexity. Using a dense mapping procedure, we sought to

understand the detailed structure of shape selectivity within

V4 RFs.

RESULTS

We analyzed responses from 93 isolated neurons in area V4

of two awake-behaving male macaques (see Experimental

Procedures). The stimuli consisted of oriented bars presented

alone or linked end to end to form curves or in the most

tightly curved conditions: ‘‘C’’ shapes (Figure 1A). Bars were

presented at eight orientations. Composite shapes were

composed of three bars linked together to yield five categories

of shapes: straight, low curvature, medium curvature, high cur-

vature, and C shaped. Stimuli were presented in fast reverse

correlation sequences (16 ms duration, exponential distributed

delay between stimuli with a mean delay of 16 ms) at various

locations within the RF of peripheral V4 neurons (2�–12� eccen-
tricity) while the monkeys maintained fixation for 3 s. The com-

posite shapes were presented on a 5 3 5 location grid centered

on the RF, while the oriented bars were presented on a finer

15 3 15 location grid. The grid of locations and the size of

visual stimuli were scaled with RF eccentricity to maintain the

same proportions as shown in Figure 1A. A pseudorandom

sequence from the combined stimulus sets was presented in

each trial.

We found that the majority of neurons in our population were

significantly selective to the composite contours. Example neu-

rons with significant tuning for composite contours are illustrated

in Figure 2 (neurons I, II, and III). The middle panels (labeled B)

show the mean firing rate response to each of the composite

forms tested (5 3 16 array) at the most responsive spatial loca-

tion. The adjacent panels to the right show the Z scores of the

responses after subtracting the mean spatial response (see

Experimental Procedures and Figure S1A, available online, for

details of assessing significance). Example neuron I is preferen-

tially tuned to straight shapes, neuron II to medium-curvature
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Figure 1. Stimuli and Selectivity

(A) V4 receptive fields (RFs) were probed with fast reverse correlation sequences drawn randomly from a set of bars or bar-composite shapes while the animal

maintained fixation for 3 s. Bars were presented at eight orientations on a fine 15 3 15 location grid centered on the neuron’s RF (red dashed circle, drawn for

illustrative purposes only). The composite stimuli were composed of three bars. The end elements were symmetrically linked to the central element at five different

conjunction angles (0�, 22.5�, 45�, 67.5�, and 90�). These five conjunction levels (enumerated as 0, straight; 1, low curvature; 2, medium curvature; 3, high

curvature; and 4, C), together with 16 orientations, yielded a total of 72 unique stimuli (although shown for aesthetic completion, the lower half of the zero-

curvature shapes [dotted box] is identical to the upper half and was not presented). The composite shapes were presented on a coarser 53 5 location grid that

spanned the finer grid. A pseudorandom sequence from the combined stimulus set was shown in each trial. The stimulus duration was 16 ms with an expo-

nentially distributed mean delay of 16 ms between stimuli.

(B) Scatterplot of mean shape selectivity index (SSI; see Experimental Procedures) versus mean spatial Z scores (bothmeans taken across all spatially significant

locations) for all candidate neurons (n = 93). A total of 13 neurons that were not shape selective are marked in blue. The remaining 80 neurons are color-coded by

their average shape preference. Example neurons in Figures 2 and 3 are highlighted.

(C) Scatterplot of mean shape selectivity index (as in B) versus average shape preference for the set of neurons that were significantly shape selective (n = 80).

There is a nonsignificant correlation between the two quantities, indicating that shape selectivity is not significantly different across cells with preference for

different shape categories. Also shown are the marginal distributions.

See also Figure S1.
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shapes, and neuron III to high-curvature/C shapes. Neuron IV

had a significant spatial response but no significant shape

selectivity. The distribution of spatial and shape selective tuning

is shown in Figure 1B. Across the population, 80 of 93 neu-

rons showed significant shape selectivity while a smaller subset

(n = 13, labeled in blue) had spatial tuning without signifi-

cant shape tuning. We did not analyze this subset further.

Furthermore, among neurons with significant shape selectivity,

those preferring either straight or more curved stimuli ex-

hibited similar degrees of selectivity (Figure 1C). There was

no correlation between the degree of selectivity and shape

preference.
Straight- and Low-Curvature-Tuned Neurons Exhibit
Spatial Invariance
We find that neurons that are tuned for straight (zero-curvature)

or low-curvature contours are spatially invariant in their tuning.

That is, they respond preferentially to the same shape in different

parts of the RF. The response characteristics of an example

neuron are shown in Figure 3 (example neuron I). Earlier studies

(Pasupathy and Connor, 1999) examined spatial invariance by

comparing the neuronal responses to the most (black bar) and

least (white bar) preferred stimulus across different spatial

locations, as seen in the lower right panel of Figure 3A. Our

fast mapping procedure allowed us to estimate the selectivity
Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc. 1103



Figure 2. Diversity of Shape Tuning

(A) Four example neurons. Top: average time course to the composite

stimuli ±SD. The average was taken across all stimuli and across all locations

on the 5 3 5 grid. The dotted line is the baseline rate, which was determined

from a temporal window between 0 and 20ms after stimulus onset. The dotted

gray box marks the temporal window where the average firing rate exceeded
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for the full set of composite shapes at different spatial locations.

Examination of the location-specific response maps taken from

four significant response locations (Figure 3B) reveals the

neuron’s full spatial invariance. The local maps show clear

tuning for straight shapes, with an orientation preference that

is shared across locations. This point is further clarified by

plotting the shape (or set of shapes) to which the neuron

preferentially responds at different locations of the stimulus

grid. This is shown in Figure 3A (bottom-left panel), in which

the set of shapes to which the neuron responded (greater than

90% of local peak rate) at each location are spatially superim-

posed (color indicates firing rate). This spatial invariance to

orientation tuning is also reflected in the homogeneity of the

fine-scale orientation-tuning map obtained from the bar stimuli

on the 15 3 15 grid (Figure 3C). Several other examples of

straight- and low-curvature-tuned neurons exhibiting spatial

invariance are shown in Figure S2.

Higher-Curvature- and C-Shape-Tuned Neurons Are Not
Spatially Invariant
In contrast, we found that neurons tuned for curved (medium to

high) andC-shaped stimuli exhibited a high degree of spatial vari-

ation in their shape preference. Two such example neurons are

shown in Figure 3 (neurons II and III). In both cases, comparing

the relative responses evoked by the most and least preferred

stimuli across locations (Figure 3A, lower right panels) suggests

a degree of spatial invariance, consistent with earlier studies (Pa-

supathy andConnor, 1999). However, the pattern of selectivity to

the full set of stimuli across locations reveals that the preferred

stimulus varies considerably across locations. Example neuron

II exhibits selectivity for distinct clusters of medium-curvature

shapes indifferent partsof itsRF (Figure3B). Thefine-scaleorien-

tation-tuningmap for this neuron (Figure 3C) shows that although

there is relatively sharp tuning for orientation at each location,

there is a systematic variation in tuning across locations, and

this variation appears to be correlated with the neuron’s spatially

varying curvature preference. Note that the average fine-scale

orientation response (Figure 3C, left inset) for this neuron is not

tuned and therefore does not reflect the diversity of orientation

tuningat the finescale. Suchaneuronwouldbemischaracterized

as nonorientation selective if mapped at a coarse level.
the baseline rate by 4 SDs. This temporal window was used for all subsequent

analysis. Bottom: spatial RFs obtained by averaging responses across the

composite shape stimuli. Significant spatial locations are marked with ‘‘x’’ (see

Experimental Procedures). Contour lines demarcate 90%, 80%, 70%, and

60% of maximum response. These were obtained by spatial interpolation of

the RF.

(B) Location-specific response map at the most responsive spatial location

(marked with black ‘‘x’’ in the spatial RF in A). The composite stimuli are

overlaid on the maps for ease of reference.

(C) Shape Z score maps (see Experimental Procedures) for the same spatial

location in (B). Neuron I is significantly selective for straight shapes, neuron II

for medium curvature, and neuron III for high curvature/C. Neuron IV is not

significantly shape selective. Contour lines demarcating Z scores at the

0.05 (outer contour) and the Bonferroni corrected (inner contour) levels are

superimposed on the response maps in (B). For ease of visualization, all color

maps in (B) and (C) were smoothed with a Gaussian kernel.

See also Figures S2 and S3.



Figure 3. Location Specificity of Shape Tuning

(A) For example neurons I, II, and III in Figure 2: spatial RFs with significant spatial locations are marked with either ‘‘x’’ or numerals (top), and a location-specific

shape or set of shapes to which the neuron responded preferentially (greater than 90% of local peak) at all spatially significant locations are shown (bottom left).

Shapes are spatially superimposed at each grid location with color indicating firing rates. Bottom right: responses to the most- and least- preferred pair of stimuli

(determined from each neuron’s most responsive location) at all spatially significant locations. The rank-order is preserved for each neuron. However, this fact

does not necessarily imply translation invariance.

(B) Location-specific response maps at four significant locations of the RF. The locations correspond to those marked with numbers in the spatial RFs in (A).

Neuron I exhibits preferential tuning to straight shapes in a position-invariant manner. In contrast, neurons II and III show spatially varying tuning to medium

curvature and high-curvature/C shapes, respectively. Contour lines demarcating shape Z scores (see Experimental Procedures) at the 0.05 (outer contour) and

the Bonferroni corrected (inner contour) levels are superimposed. For ease of visualization, all color maps were smoothed with a Gaussian kernel.

(C) Fine-scale orientation-tuning maps obtained with the bar stimuli on the 153 15 grid. The color-coded oriented lines represent the bar stimuli; the line lengths

are normalized to the maximum across all orientations and locations. Left inset: average orientation response across all locations on the fine grid. Right-inset:

smoothed fine-scale orientation map with hue indicating preferred orientation, saturation indicating sharpness of orientation tuning, and value indicating average

response (see Figure 6 for hue-saturation-value color-coding description). Neuron I has a homogenous fine-scale map. In contrast, neurons II and III have very

heterogenous maps; there is local tuning, but the tuning changes across space.

See also Figures S2 and S3.
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Example neuron III shows similar spatially varying preference

for the C stimuli and a heterogeneous fine-scale orientation

map. We see evidence for tuning along both dimensions of our

stimulus space: orientation (e.g., neuron III, location 4) and shape

category (e.g., neuron II, locations 2 and 4). We considered if

neurons selective to highly curved shapes might be less tuned

to the orientation of the shape. However, at the population level,

we find that orientation tuning, as indexed by circular variance
(see Supplemental Experimental Procedures), is not correlated

with shape preference (Figure S1C). We also considered if these

neuronsmight be less tuned in the shape dimension (Figure S1B).

Again, we find that at the population level, an index of shape

tuning (see Supplemental Experimental Procedures) is not corre-

lated with shape preference (Figure S1D). Other examples of

neurons exhibiting spatial variation in shape preference are

shown in Figure S3.
Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc. 1105
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Figure 4. Heterogeneity of Shape Tuning across RF Locations

(A) The color map shows the conditional joint distribution of local shape preference and the angular deviation of shape orientation, Dqpref, across all neurons

(n = 32) with local shape preference for straight or low curvatures (shape preference values between 0 and 1) at the maximally responsive location. The joint

distribution was computed from all spatially significant locations within the response grid other than themaximally responsive location for each neuron.Dqpref was

computed as the absolute value of the angular orientation deviation of the local preferred shape from that of the preferred shape at the maximally responsive

location. The histograms at the top and right show the marginal distributions of local shape preference and Dqpref, respectively. These neurons tend to prefer

straight/low curvatures of the same orientation at other locations.

(B) Same format as in (A) but for neurons with local shape preference formedium curvature (n = 16, shape preference values between 1.5 and 2.5) at themaximally

responsive location. Such neurons tend to prefer medium curvature at other locations, but the preferred shapes are not as sharply tuned to the reference

orientation at the maximally responsive location as in (A).

(C) Same format as in (A) but for neurons with local shape preference for high curvature/C (n = 20, shape preference values between 3 and 4) at the maximally

responsive location. Such neurons also prefer high curvature/C at other locations, but the preferred shapes do not share the same orientation. The marginal

distribution of Dqpref in (A) is significantly different from those in (B) and (C).
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Heterogeneity of Feature Selectivity across RF
Locations of Neurons Tuned for Higher-Curvature or
C-Shaped Stimuli
To quantify the relationship between curvature preference and

spatial invariance at the population level, we examined two com-

plementary aspects of the neuronal data. First, we computed the

shape preference and the preferred orientation at each location

in the stimulus presentation grid where the neuron responded

significantly (see Experimental Procedures). As one measure of

translation invariance, we determined the preferred shape and

orientation at the maximally responsive location and measured

how shape and orientation preferences changed relative to

those values at other spatial locations (Figure 4). We find a clear

difference in spatial invariance between the population of cells

that prefer straight/low curvature (local shape preference values

between 0 and 1, n = 32; Figure 4A) versus those that either pre-

fer medium curvature (local shape preference values between

1.5 and 2.5, n = 16; Figure 4B) or high-curvature/C-shaped

stimuli (local shape preference values between 3 and 4, n = 20;

Figure 4C). We find that those neurons that preferred straight

or low curvature at themost responsive location tend to be tuned

for similar orientations at other RF locations and preserve their

shape preference across locations (Figure 4A). In contrast,

although neurons that prefer high curvature at their maximally

responsive location continue to prefer high curvature at other

locations within the RF, the preferred shapes do not generally

share the same orientation (Figure 4C). Similarly, neurons with

preference for medium curvature at their maximally responsive

location tend to prefer medium curvature at other locations,
1106 Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc.
but the preferred shapes are not as sharply aligned with the

reference orientation (Figure 4B). The marginal distribution of

orientation preference for the straight/low-curvature neurons

(Figures 4A, right histogram) was significantly different from

those of the other two subpopulations (Figures 4B and 4C, right

histograms; p = 0.03 and p = 0.006, respectively; see Experi-

mental Procedures).

Second, we compared neuronal response patterns across the

entire set of curved shapes between pairs of locations within

the RF. For any pair of location-specific response maps where

the neuron responded significantly, we estimated the empirical

distribution of correlation coefficients between the response

patterns (see Experimental Procedures; Figure S4). The mean

pattern correlation (r, expected value of the empirical distribu-

tion) provides a measure of tuning similarity or invariance

between pairs of locations in the RF, with values closer to 1 cor-

responding to spatially invariant tuning. The average pattern cor-

relation for each neuron (averaged across all pairwise r values)

when plotted against the average shape preference (Figure 5A)

shows a power-law decay relationship. Neurons with preference

for medium curvature and higher tend to have little spatial

invariance. In contrast, neurons with very low-curvature prefer-

ence tend to have substantial spatial invariance, with few units

exhibiting low invariance.

For each location pair in our population, we also calculated the

reliability of the estimated pattern correlation from the SD of the

empirical distribution (see Experimental Procedures). This con-

trols for the possibility that noisier data gave rise both to greater

response heterogeneity and lower pattern correlations. A
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Figure 5. Neurons with Preference for Curvature Have Limited Spatial Invariance
(A) Average correlation between pairs of response patterns (averaged across all possible pairs of spatially significant response locations for each neuron; see

Experimental Procedures) plotted against the average shape preference for all neurons in our population (n = 80) shows an inverse power law relationship (red

curve) (R2 = 0:4). Average pattern correlation is high for neurons tuned for straight/low curvature, while the pattern correlation is low for neurons tuned for high

curvature/C, indicating a trade-off between curvature and spatial invariance. The three example neurons in Figures 2 and 3 are indicated.

(B) Scatterplot of pairwise pattern correlation versus pairwise pattern reliability for all possible pairs of significant response locations in our entire neuronal

population. The colors indicate the average shape preference of the neuron to which the location pair belongs. Right histograms: distribution of pattern correlation

for pairs that came from three sub-population of neurons: neurons with average shape preference for straight/low curvature (shape preference values between

0 and 1), those that came from neurons with average shape preference for medium curvature (shape preference values between 1.5 and 2.5), and those that came

from neurons with average shape preference for high curvature/‘‘C’’ (shape preference values between 3 and 4). The correlation distribution of the straight/low-

curvature subpopulation is significantly different from those of the other two subpopulations. Bottom histograms: distribution of pattern reliability for the same

three subpopulations as above. The reliability distributions are not significantly different from each other.

See also Figure S4.
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scatterplot of pattern correlation (r) versus pattern reliability (r) is

shown in Figure 5B for all possible location pairs across all neu-

rons in our population. We see no difference in the reliability of

our estimates for three subpopulations of location pairs: those

that come from neurons with average shape preference for

straight/low curvature (shape preference values between

0 and 1), those from neurons with average shape preference

for medium curvature (shape preference values between 1.5

and 2.5), and those from neurons with average shape preference

for high-curvature/C-shaped stimuli (shape preference values 3

and 4) (Figure 5B, lower histograms). If those neurons that

showed variation in their response pattern across locations did

so due to noise in their estimates (i.e., due to low firing rates or

fewer trial repeats), then we would expect them to have low reli-

ability values. Thus, differences in spatial invariance cannot be

attributed to differences in the statistical reliability of estimates.

One last point that is worth highlighting is that pairs with lower

pattern correlation values come from neurons with a preference

for higher-curvature/C shapes, whereas those with higher
pattern correlation come from neurons with a preference for

straight/low-curvature shapes. The distribution of pattern corre-

lation of the straight/low-curvature subpopulation is significantly

different from those of the other two subpopulations (Figure 5B,

right histograms; p = 0.001 and p = 0.0001, respectively; see

Experimental Procedures).

We thus find evidence for a trade-off between shape selec-

tivity and position invariance. This phenomenon is evident in

terms of both the peak shape selectivity and the overall firing

rate patterns to the entire set of composite shapes.

Spatial Layout of Fine-Scale Orientation-Tuning Maps
Determines Shape Selectivity
We questioned whether or not we could explain the diversity of

shape tuning from the diversity in the fine-scale orientation-

tuning maps of V4 neurons (Figure 6). Some neurons show

high degrees of translation invariance for orientation at this finer

scale (Figure 6, bottom row) while others show heterogeneous

tuning (Figure 6, top row). As noted above, the spatial layout of
Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc. 1107



Figure 6. Fine-Scale Orientation-Tuning Maps Illustrate the Diversity of Tuning in V4 Neurons

Smoothed fine-scale orientation maps are shown for 17 example cells. Smoothing was achieved by linear interpolation of the respective fine-scale maps on the

153 15 grid and color-coding as follows: hue indicates preferred orientation, saturation indicates sharpness of orientation tuning, and value indicates normalized

average response. The hue-saturation-value color-coding scheme is illustrated by the color cone on the bottom right. The maps are arranged from heteroge-

neous (top left) to homogenous (bottom right). The three example neurons of Figures 2 and 3 are indicated.
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the fine-scale orientation-tuning maps in our example cells

(Figure 3C) seems to reflect the cell’s shape-selective properties.

It has been proposed, both from experimental observations

(Chapman et al., 1991; Jin et al., 2011) and theoretical simula-

tions (Paik and Ringach, 2011), that simple pooling of the

spatially segregated afferent connections from the lateral genic-

ulate nucleus (LGN) to the primary visual cortex (V1), might deter-

mine both the orientation-tuning characteristics of V1 neurons as

well as the pinwheel structure of orientation maps in V1. We

hypothesized that this pooling architecture might carry forward

to downstream retinotopic extrastriate areas like V4. This

hypothesis is also consistent with earlier proposals, in which

neuronal responses in V4 to combinations of line elements are

weighted averages of the responses evoked by individual ele-

ments (Ghose and Maunsell, 2008; Lee and Maunsell, 2010;

Reynolds et al., 1999; Reynolds and Heeger, 2009), and with

related proposals in MT (Heuer and Britten, 2002; Rust et al.,

2006) and IT (Zoccolan et al., 2005).

To examine the degree to which the pooling of orientation sig-

nals could account for the observed complexity of shape tuning

in V4 neurons, we generated location specific-response predic-

tions to the composite shapes derived from a simple weighted

average of the component responses obtained from the fine-

scale orientation-tuning maps (see Experimental Procedures).

We then calculated the correlation coefficient between the

observed response pattern and the predicted response pattern.

Note that the fine-scale orientation maps contain both a spatial

response component and an orientation-tuning component.

To investigate the contribution of these components, we also
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considered two reduced versions of the pooling model (see

Experimental Procedures; Figure S5C). A space-only version

was obtained by averaging across orientation at each fine-grid

location. This model did not have any local orientation tuning.

An orientation-only version was obtained by subtracting the

space-only response from the measured data at each fine-grid

location, leaving only orientation tuning. Thus, this model did

not contain any local spatial information.

The predicted response maps for two example neurons (neu-

rons II and III in Figures 2 and 3) are shown in Figure 7A (panels

labeled ‘‘prediction’’). Maps are shown for three different RF

locations for each neuron. For the RF location marked ‘‘1’’, the

left panel shows the empirical data, while the other three panels

show the predicted responses from the full model and the two

reduced models. Shown below the predicted response maps

are the corresponding sections of the fine-scale orientation

map, which were used to generate the predictions. To take the

example of RF location 1 in neuron II, we can see clearly that

the selectivity for medium-curvature shapes pointing upward

arises from the layout of the fine-scale map; the middle location

is tuned to horizontal elements, the upper-left location is tuned to

elements tilted 45 degrees counterclockwise, and the upper-

right location is tuned to elements tilted 45 degrees clockwise

(and also vertical). There is a close correspondence between

the data and the predicted patterns both for the full model and

the orientation-only model. The space-only model performed

less well but still explained significant parts of the response

(r= 0:43 for the space-only model versus r= 0:58 for the orienta-

tion-only model). Thus, both spatial and orientation components
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contribute giving the best correlation (r= 0:67) for the full model.

Only the predictions of the full model are shown for RF locations

‘‘2’’ and ‘‘3’’. The model correlations (full model only) at each

spatially significant location are shown in the lower left panel of

Figure 7A.

In the case of example neuron III, the local orientation tuning

was highly heterogeneous and most of its curvature selectivity

could be explained by local spatial tuning alone. As seen for

RF location 1, the largest responses occur for composite

shapes whose ends fall in the upper part of the fine-scale grid

where the spatial response is higher (i.e., on the RF boundary).

The orientation of the end elements is not critical, but they

must fall inside the RF. The space-only model provided a better

fit (r= 0:66) as compared to the local orientation information

(r= 0:22), and, in fact, the combined orientation and spatial

information in the full model slightly worsens the prediction

(r= 0:60). This neuron may thus be largely nonselective to orien-

tation but nevertheless exhibits curvature selectivity at the

boundaries of the RF due to spatial inhomogeneity. This high-

lights to what extent texture- or nonorientation-selective units

can exhibit curvature-selective responses at their spatial bound-

aries. Other cells tuned for high-curvature shapes exhibited

similar orientation heterogeneity (Figure 6, top row) and had

selectivity for curved shapes typically at the RF boundary (see

examples in Figure S3).

To test the predictive power of the model, we computed a null

distribution of the correlation coefficients by repeatedly shuffling

the fine-scale orientation maps and then generating response

patterns from these shuffled maps (Figure S5A; see Experi-

mental Procedures). This shuffling procedure perturbed the rela-

tive spatial structure of the fine-scale map within a coarse grid

location. It thus serves as a comparison against which to test

whether contour preferences at a given location depend on the

spatial arrangement of the local orientation map. Using this pro-

cedure, we calculated whether any of the model correlations

(across all spatially significant locations) were significantly dif-

ferent from chance (p = 0.05) after correcting for multiple com-

parisons. The spatial locations where the model correlations

are significant are demarcated with ‘‘x’’ for our example neurons

(Figure 7A, lower left panels). Across the population, 80%of neu-

rons showed a significant prediction (i.e., at least one RF location

with significant p value; on average 40% of the RF locations had

significant p values).

The linear pooling model accounts for a substantial fraction of

the response variance (see Experimental Procedures) across

neurons with varied shape preferences. Figure 7B shows a scat-

terplot of the mean explained variance (averaged across RF

locations) for the full model versus average shape preference.

The marginal distribution of the mean explained variance has a

median value of 0.25. Examining the histogram of explained vari-

ance for the full and reduced models (Figure 7C), we see that the

orientation-onlymodel plays a dominant role for the straight/low-

curvature categories (linear Pearson correlation, r = �0.4, p <

0.001). Note that the local orientation significantly improved

fits for medium-curvature neurons (p < 0.001), though not for

high-curvature neurons. Thus, for medium curvature, local orien-

tation plays a significant role. Meanwhile, the space-only model

plays a key role across all shape categories (r = 0.09, p = 0.02).
In general, the full model is the best predictor across the

population.

Note that the pooling model explored in our study does not in

any way deemphasize the importance of nonlinearities in the

neuronal response. Previous studies have found that nonlinear

operations such as divisive normalization help explain the

responses of extrastriate neurons to multiple oriented stimuli in

their RFs (Heuer and Britten, 2002; Lee and Maunsell, 2010;

Reynolds et al., 1999). Here, we show that the simplest model,

linear pooling of local oriented responses, can in fact explain

much of the variation in V4 shape tuning across space, but we

anticipate that more complete models incorporating nonlinear-

ities would perform still better.

Control Conditions
To investigate whether some of our results were influenced by

the spatial and temporal characteristics of our stimuli, we con-

ducted several control experiments on subsets of cells in our

neural population (see Supplemental Experimental Procedures).

Neurons exhibit virtually identical tuning when stimuli were pre-

sented for longer durations (200 ms; Figure S6) and when the

components of the curved shapes were changed to elongated

Gabors (Figure S7A). Neurons did not exhibit tuning to spatially

scrambled versions of the stimuli, indicating tuning for spatial

structure (Figure S7B). This was consistent with the fact that

spatial shuffling of the fine-scale orientation maps yields very

poor prediction of shape selectivity, thus lending further support

to the importance of local structure.

DISCUSSION

One innovation of the current study is the use of fast reverse cor-

relation procedures to map V4 RFs. Such techniques are com-

mon in earlier visual areas (Ringach, 2004), but previous studies

in V4 have generally used longer-duration stimuli, typically with

durations ranging from 200 to 500 ms and correspondingly

long interstimulus intervals. The primary advantage of the fast

mapping technique was that it allowed us to perform a dense

mapping of shape selectivity across several locations in the RF

in addition to a fine-grained mapping of the selectivity to individ-

ual oriented components of the composite shapes. This provides

a more comprehensive description of contour/shape selectivity

across the RF than has been possible in previous studies.

The present results reveal considerable heterogeneity in

feature selectivity and the translation invariance of neurons in

macaque area V4 and force us to reconsider the established

notion that neuronal invariance increases as one traverses the

ventral visual hierarchy. Consistent with the conclusions of

earlier reports (Pasupathy and Connor, 1999), we find a subpop-

ulation of V4 neurons whose stimulus tuning is maintained

throughout the RF. Also consistent with earlier studies, the

majority of neurons did exhibit a higher firing rate to the most

preferred stimulus tested versus themost nonpreferred stimulus,

across spatial locations. However, a detailed mapping of stim-

ulus tuning reveals many neurons exhibiting considerable vari-

ability in tuning across space and very limited spatial invariance.

This diversity can be captured by two underlying organizing

principles.
Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc. 1109



Figure 7. A Weighted Average Pooling Model of Local Orientation Predicts Shape Tuning

(A) The pooling model is illustrated for two example neurons (neurons II and III in Figures 2 and 3). For the RF location marked ‘‘1’’, the left panel shows the

empirical data, while the other three panels show the predicted responses for the full model and two reduced models (space-only and orientation-only; see

Experimental Procedures and Figure S5c). Also shown are the corresponding sections of the fine-scale maps used to predict the responses. Indicated above

each predicted response map is the pattern correlation between the data and the prediction. Only the predictions of the full model are shown for RF locations ‘‘2’’

and ‘‘3’’. Since our attempt was not to match firing rates but to quantify the match in the response patterns between the data and prediction, all panels are shown

in independently normalized firing rate units. Shown below the RF in the lower left panel are the model correlations (full model only) at each spatially significant

location. The spatial locations where the model correlations are significant (compared to spatially shuffled arrangements; see Experimental Procedures and

Figures S5a and S5b) are demarcated with ‘‘x’’.

(B) Scatterplot of the mean explained variance (averaged across all RF locations for each neuron) for the full model versus average shape preference (n = 80). The

three example neurons in Figures 2 and 3 are highlighted. The marginal distribution of the mean explained variance has a median value of 0.25.

(C) Histogram of explained variance for the full and reducedmodels. The data were aggregated across all spatially significant RF locations for all neurons (n = 80)

and binned according to local shape preference. The orientation-only model dominates for the straight/low-curvature categories, while the space-only model

plays a key role across all shape categories. Paired comparisons between the full and reducedmodels were tested for statistical significance (Student’s t test) and

are indicated with asterisks. Error bars indicate SEM.
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Fine Structure of V4 RFs
The first is the dichotomy between the heterogeneity of feature

selectivity across RF locations in the case of neurons tuned to

higher-curvature/C shapes and its homogeneity in the case of

neurons tuned to straight/low-curvature shapes. The denser
1110 Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc.
sampling of the RF afforded by our method reveals that true

translation invariance is largely restricted to neurons preferring

straight contours. Neurons with preference for very low curva-

ture tend to exhibit spatial invariance, but curvature/C-selective
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neurons often exhibit a high degree of variation in shape prefer-

ence across their RFs. Further, curvature-tuned neurons tend to

prefer curved over straight elements at different locations in the

RF while varying in the orientation of the preferred shape across

locations (Figures 4B and 4C). These results are echoed by our

observations from a separate study where we have observed a

trade-off between curvature and invariance using naturalistic

images. Thus, we expect that the conclusions of the present

study will generalize across different stimulus conditions. This

is also supported by the control analyses presented above in

which virtually identical tuning was observed when stimuli were

presented for longer durations.

There is strong evidence that object recognition is quite rapid

as has been demonstrated via rapid serial visual presentation

(Potter and Levy, 1969) and rapid object categorizing (Bodelón

et al., 2007; Thorpe et al., 1996) paradigms, suggesting a

primary involvement of the feed-forward pathway. Our study

focused on neuronal selectivity to individual contour fragments,

and the rapid reverse correlation proceduremay havemainly iso-

lated feed-forward contributions to the neuronal response.When

we compared the shape selectivity among a sample of neurons

with fast mapping procedures and longer-duration stimuli, we

found striking similarities in their selectivity to the individual

elements (Figure S6). It is possible that recurrent or feedback

connections, mediated at longer latencies, could refine the

selectivity of the initial V4 visual responses and could contribute

to spatial invariance as well as to other object-centered or atten-

tion-dependent effects (Connor et al., 1996; Pasupathy and

Connor, 2001; Yau et al., 2013). Further studies with dense

spatiotemporal mapping are needed to fully understand neu-

ronal selectivity to complex combinations of shape fragments.

The second organizing principle alluded to above is that the

diversity of shape tuning in V4 is well accounted for by a simple

pooling of local orientation signals. Much of the complexity of

V4 tuning in our data set could be explained by a linear pooling

of the local responses to smaller oriented elements used to form

our composite stimuli. Both the spatial-response and orienta-

tion-tuning components of the local orientation maps play a key

role in determining shape selectivity.Wefind that curvature selec-

tivity could arise either due to systematic variation in fine-scale

orientation tuning across RF locations (Figure 6, middle row) or

due topurelyspatial aspectsas in thecaseof tuningheterogeneity

(Figure 6, top row). This latter category presents the interesting

possibility that such neurons might respond to closed areas of

texture, congruent with the idiosyncratic shape of their RFs.

The primary visual cortex is organized into iso-orientation

domains punctuated with pinwheel regions that vary in orienta-

tion preference over short distances (Blasdel, 1992; Bonhoeffer

and Grinvald, 1991; Bosking et al., 1997). Neurons tuned for

medium curvature (Figure 6, middle row) may inherit their shape

tuning from such domains of heterogeneous orientation tuning.

Consistent with this, we found that orientation-tuning maps

measured with smaller elements generally varied continuously

in their preferred orientations, showing transitions from one

orientation to another, as one might expect when pooling from

neurons near an orientation pinwheel in earlier areas. In contrast,

straight-tuned neurons (Figure 6, bottom row) exhibited fine-

scale orientation maps that were constant in their orientation
preference, as would be expected if these neurons inherited their

tuning properties from homogenous orientation domains. This

hypothesis is also consistent with the conclusion that the RFs

of central V4 neurons correspond to a constant-sized sampling

of the V1 cortical surface (Motter, 2009). Our control experiments

show that these findings are robust against the spatial character-

istics of the primitives that made up the curved stimuli.

Previous assessments of spatial invariance were made using

the most and least preferred stimuli, either with local curved

stimuli (Pasupathy and Connor, 1999) or with larger pattern stim-

uli (Pasupathy and Connor, 2001), and found consistent selec-

tivity across shifts in position half the RF size or more. Models

inspired by these earlier findings utilized linear pooling mecha-

nisms to achieve feature selectivity followed by nonlinearities

such as ‘‘soft-max’’ selection to gain spatial invariance (Cadieu

et al., 2007). The soft-max operation can be parametrically varied

to yield a simple averaging operation at one end (no spatial

invariance) to taking the ‘‘max’’ operation on the other (full spatial

invariance). Consistent with the earlier studies, we find that both

straight- and curve-preferring neurons do preserve a relative

preference for the stimuli that are, on average, most and least

preferred (Figure 3A, bottom right panels). However, the more

detailed examination in our study leads us to conclude first

that shift invariance is much more limited than previously appre-

ciated, at least for local curved elements, and, further, that much

of the response across the RF is well explained by linear pooling

of local orientation responses.

Wenote that the variation in curvature tuning thatweobserve is

consistent with previous studies using closed form contour stim-

uli (Carlson et al., 2011; Pasupathy and Connor, 2001) that show

selectivity to different convex and concave curves positioned

relative to thecenter of a closed form.However, the limitedspatial

invariance that we observe and the success of local orientation

pooling in predicting responses lead us to suggest that spatial

invariance to larger pattern stimuli will be much more restricted

thanpreviously suggested, fallingwithin oneof our coarse grid lo-

cations (about one-third of the RF size). Recent studies at still

higher stages of processing such as IT also call into question

the spatial extent of invariance in ventral stream representations,

suggesting invariance is not intrinsic but is a learned attribute of

those representations (Cox and DiCarlo, 2008).

It is possible that the 13 neurons excluded from our analyses

due to their lack of shape selectivity are purely color selective

(see, e.g., Bushnell et al., 2011). The relationship between the

present findings and the recent report of segregated orientation

and color domains (Tanigawa et al., 2010) remains to be

explored. Since cells selective for higher curvature are not

strongly tuned for orientation (Figure 3, example neurons II

and III), domain segregation might be somewhat reduced if

measured using composite shapes (as in our study). We do not

see evidence for the response bias toward acute contour curva-

ture as reported in a recent study (Carlson et al., 2011). This

could be due to the fact that in our study we explored the fine

structure of the entire RF, whereas the stimuli used in the Carlson

et al. study were presented at the center of the RF and typically

spanned the extent of the RF.

The finding that spatial invariance falls off with preference

for more curved contours suggests a possible segregation of
Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc. 1111
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function. Spatially invariant neurons selective for orientation

may play a role in representing extended regions of uniform

texture, where the location of the individual texture elements

need not be encoded with great spatial precision. In contrast,

neurons selective for curvature are likely activated when an

appropriately curved contour falls at a particular location within

the RF. This form of spatially selective encoding of curved con-

tours would be useful in localizing contours, particularly at the

points of high curvature that often play a critical role in defining

shape (Attneave, 1954; Feldman and Singh, 2005). We note

that such a code, although parsimonious, would be ambiguous

for downstream neurons, which would likely integrate multiple

signals to derive an unambiguous interpretation of a complex

contour.

Although the trade-off between invariance and contour

complexity does suggests distinct functions, we also find that

V4 responses across this spectrum can be explained using a

simple model that pools fine-scale orientation signals. This sug-

gests that differences in invariance and contour complexity

depend on differences in the orientation-selective inputs that

are pooled to give rise to selectivity in V4. We thus suggest

that these different patterns of shape tuning and invariance

can be understood as arising from differences in the wiring that

links orientation-selective inputs to V4, with a simple pooling

model serving to integrate these different inputs.

EXPERIMENTAL PROCEDURES

Electrophysiology

Neurons were recorded in area V4 in two rhesus macaques. Experimental and

surgical procedures have been described previously (Reynolds et al., 1999). All

procedures were approved by the Salk Institute Institutional Animal Care and

Use Committee and conformed to NIH guidelines. See Supplemental Experi-

mental Procedures for further details.

Stimulus Presentation and Eye-Movement Monitoring

Stimuli were presented on a computer monitor (Sony Trinitron Multiscan, TC,

640 3 480 pixel resolution, 120 Hz) placed 57 cm from the eye. Eye position

was continuously monitored with an infrared eye tracking system (240 Hz,

ETL-400; ISCAN). Experimental control was handled by NIMHCortex software

(http://www.cortex.salk.edu/). Trials were aborted if eye position deviated

more that 1� from fixation.

Preliminary RF Mapping

At the beginning of each recording session, neuronal RFs were mapped to

determine the approximate spatial extent over which stimuli elicited a visual

response. Monkeys fixated a central point during which each neuron’s RF

was mapped using subspace reverse correlation in which Gabor (eight orien-

tations, 80% luminance contrast, spatial frequency 1.2 cpd, Gaussian half-

width 2�) or ring stimuli (80% luminance contrast) appeared at 60 Hz. Each

stimulus appeared at a random location selected from a 19 3 15 grid with 1�

spacing in the inferior right visual field. The orientation of the Gabor stimuli

and the color of all stimuli (one of six colors or achromatic) were randomly

selected. This resulted in an estimate of the spatial RF, orientation, and color

preference of each neuron. Recordings were often made from multiple elec-

trodes, and the preferences of units on separate channels did not always

match. The stimuli for the main experiment were centered on the estimated

spatial RF of the best-isolated units.

Task and Stimuli

The monkey began each trial by fixating a central point for 200 ms and then

maintained fixation through the trial. Each trial lasted 3 s, during which

neuronal responses to a fast-reverse correlation sequence (16 ms stimulus
1112 Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc.
duration, exponential distributed delay between stimuli with mean delay of

16 ms, i.e., 0 ms delay p = 1/2, 16 ms delay p = 1/4, 32 ms delay p = 1/8,

and so on) were recorded. The stimuli were composed of oriented bars (eight

orientations) or bar composites (16 orientations 3 5 conjunction angles, total

of 72 unique stimuli, Figure 1A). These latter stimuli were constructed from

the conjunction of three bars at conjunction angles of 0�, 22.5�, 45�, 67.5�,
and 90� between the end elements and the center. The five conjunction levels

created five categories of shapes. These were enumerated as 0 (zero curva-

ture/straight), 1 (low curvature), 2 (medium curvature), 3 (high curvature), and

4 (C). A pseudorandom sequence from the combined stimulus sets was pre-

sented in each trial. The composite stimuli were presented on a uniform 5 3

5 location grid (‘‘coarse grid’’) centered on the estimated spatial RF based

on the preliminary mapping. The grid locations were separated by one-fourth

of the RF eccentricity (for example, for a RF centered at 6�, the grid-spacing

was 1.5� and the grid covered a visual extent of 3�–9�). The oriented bar stimuli

were presented on a finer 15 3 15 location grid (‘‘fine grid’’) that spanned the

larger 5 3 5 grid in equally spaced increments. Stimuli were scaled by RF

eccentricity, such that each single bar element spanned approximately the

diagonal length of the fine grid. The RFs of all neurons reported in the study

were in the parafoveal region between 2� and 12� in the inferior right visual

field.

Inclusion Criteria

Only well-isolated units were considered as potential candidates (n = 251)

for the analysis. Among these, only those neurons with robust visual re-

sponses were selected. The robustness of the spatiotemporal response to

the visual stimuli was determined as follows: a temporal window between

60 and 120 ms after stimulus onset was used to identify a temporal interval

of significant visual response. The temporal window was divided into

8.33 ms bins for determining the peristimulus time histogram (PSTH). Typical

average temporal responses to the composite stimuli are shown in Figure 2A.

The temporal window for each neuron, Tsig, was taken as those PSTH bins

where the mean firing rate averaged across all stimulus conditions exceeded

the baseline rate by 4 SDs (significant time points labeled in Figure 2A,

dotted gray box). The baseline rate was determined from a temporal window

between 0 and 20 ms after stimulus onset. A neuron was considered a po-

tential candidate for further analysis if it had a clear transient response peak

that was contained within the larger 60–120 ms interval. A total of 23 single

units were eliminated in this process. Of the remaining 228 units, we elimi-

nated a further 135 units since their fine-scale orientation maps (described

below) were not fully contained within the stimulus presentation grid (i.e.,

the spatial extent of the RFs of these neurons could not be fully

characterized).

With the remaining 93 units, we next determined the locations within the

coarse 5 3 5 stimulus grid where the neuron had significant spatial

responses. We first performed a jackknife analysis on the data (Nj = 20

jackknifes, each using 95% of trials). For each jackknife, j, we determined

the neuronal response, rðx; y; s; jÞ to a particular composite stimulus, s, at

grid location ðx; yÞ, as the average firing rate (within Tsig) across stimulus

repeats. The mean, brðx; y; sÞ, and SEM, hðx; y; sÞ, of the responses across

the 20 jackknives were then used to calculate a spatial Z score at each grid

location ðx; yÞ:

Zspaceðx; yÞ=
brðx; y; �Þ � b

hðx; y; �Þ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nj � 1

p ;

where b was the baseline firing rate and the * operation indicates that the

responses were averaged across stimuli. The grid location was marked as

significant if the spatial Z score exceeded the significance level of 0.05 (cor-

rected for 25 multiple comparisons; see Figure S1A). Spatially significant

grid locations for example neurons are marked with ‘‘x’’ or numerals in Figures

2 and 3.

For each spatially significant grid location, we next determined whether the

neuron was significantly selective to the composite stimuli at that location. We

calculated a Z score for each stimulus:

Zshapeðx; y; sÞ=
brðx; y; sÞ � brðx; y; �Þ
hðx; y; sÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nj � 1
p :

http://www.cortex.salk.edu/
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We define a shape selectivity index, SSIðx; yÞ, for that spatial location as the

maximum of the shape Z scores: SSIðx; yÞ=maxðZshapeðx; y; sÞÞ.
A grid location was considered significantly shape selective if the index ex-

ceeded the significance level of 0.05 (corrected for 72 3 M multiple compari-

sons, whereMwas the number of significant spatial locations; see Figure S1A).

A neuron was considered significantly shape selective if it had at least one

spatially significant grid location that was also significantly shape selective.

A total of 13 neurons failed this significance test. These neurons had significant

spatial RFs, but were not significantly shape selective (Figure 1B). An example

of a nonselective neuron is shown in Figure 2 (example neuron IV). We did not

analyze these neurons any further. All subsequent analyseswere performed on

the remaining 80 neurons.

Data Analysis

Weused themean responses brðx; y; sÞ to generate three basic responsemaps:

(1) location-specific response maps for the composite stimuli at each location

in the 5 3 5 presentation grid (Figures 2B and 3B); (2) average response map,

brð�; �; sÞ, for the composite stimuli by averaging across spatially significant grid

locations; and (3) fine-scale orientation-tuning maps using the same proce-

dure as in (1) for the bar stimuli on the 15 3 15 grid (Figure 3C).

For the population analysis, we determined several metrics from the

response maps for each neuron:

Average Shape Preference

Average shape preference was calculated by first determining the set of com-

posite shapes, si, whose firing rate in the average response map, brð�; �; siÞ, ex-
ceeded 90% of the maximum firing rate. The shape category, ci (0: straight, 1:

low curvature, 2: medium curvature, etc.), corresponding to these shapes was

weighted and averaged by their firing rates to determine the average shape

preference:

P
i

brð�; �; siÞci

P
i

brð�; �; siÞ :

Local Shape Preference

Local shape preference is same as above but derived from the location-

specific response maps.

Local Preferred Shape Orientation

Local preferred shape orientation is the orientation (0�, 22.5�, 45� . 337.5�) of
the local preferred shape defined above. We computed the conditional joint

distribution of local shape preference and the angular deviation of preferred

shape orientation, Dqpref (Figure 4). The computation was conditioned on the

shape preference and shape orientation at the maximally responsive location

for each neuron. For all spatially significant locations other than the maximally

responsive location, Dqpref was computed as the absolute value of the angular

deviation of the local preferred shape orientation from that of the preferred

shape orientation at the maximally responsive location. We divided our

neuronal population into three subpopulations: those that preferred straight/

low curvature (local shape preference values between 0 and 1, n = 32; Fig-

ure 4A), those that preferred medium curvature (local shape preference values

between 1.5 and 2.5, n = 16; Figure 4B), and those that preferred high curva-

ture/C (local shape preference values between 3 and 4, n = 20; Figure 4C) at

the maximally responsive location. To test whether the marginal distributions

of the orientation deviation, Dqpref, between the straight/low-curvature-prefer-

ring units and the high-curvature/C-preferring units (Figures 4A and 4C, right

histograms) were significantly different, we calculated the Kullback-Leibler

(KL) divergence between the distributions:

DKLðPkQÞ=
X
i

PðiÞ ln PðiÞ
QðiÞ;

where P is the marginal distribution in Figure 4A andQ is the marginal distribu-

tion in Figure 4C. This yielded a value of 0.5685. We then computed a boot-

strapped set (Efron and Tibshirani, 1993) (1,000 iterations) of divergences

DKLðPkPnullÞ with respect to the null distribution, Pnull , which was obtained

from a random sample (with replacement) of the combined data that underlay

the two distributions P andQ. Comparing DKLðPkQÞ to this distribution yielded

a p value of 0.006, indicating that the two marginal distributions were signifi-
cantly different. Similarly, the marginal distributions between the straight/

low-curvature-preferring units and themedium-curvature-preferring units (Fig-

ures 4A and 4B, right histograms) were also significantly different (p = 0.03).

Pair-Wise Pattern Correlation, r, and Pair-Wise Pattern Reliability, r

For any pair of spatially significant coarse grid locations, we estimated the

empirical distribution of correlation coefficients between the response pat-

terns (location-specific response maps) at the two locations using a bootstrap

procedure (resampling with replacement, 1,000 iterations) (Efron and Tibshir-

ani, 1993). The pairwise pattern correlation (r) was taken as the expected value

of a Gaussian fit to this empirical distribution (Figure S4). The Gaussian fits

were in excellent accord with the raw distributions across our data set. The

pairwise pattern reliability, r, was defined as r =1� s, where s was the SD of

the Gaussian fit to the empirical distribution (Figure S4). The reliability served

as a measure of data quality, with values closer to 1 indicating that the

estimates of pattern correlation were more reliable. A scatterplot of pattern

correlation versus pattern reliability for all possible location pairs in our

neuronal population is shown in Figure 5B. The marginal distributions of

pattern correlation (Figure 5B, right histograms) and pattern reliability (Fig-

ure 5B, lower histograms) for three subpopulations—points that came from

neurons with average shape preference for straight/low curvature (average

shape preference values between 0 and 1), those that came from neurons

with average shape preference for medium curvature (between 1.5 and 2.5),

and those that came from neurons with average shape preference for high cur-

vature/C (between 3 and 4)—were tested for statistical difference (using the

same procedure described above using the KL divergence measure). The

marginal distribution of pattern correlation for the low/straight neurons was

significantly different from those of the high-curvature/C-preferring (p =

0.0001) and the medium-curvature-preferring neurons (p = 0.001). The distri-

butions of pattern reliability were not significantly different from each other,

indicating that differences in data quality were not an issue.

To examine the idea that local pooling of orientation signals within subre-

gions of the RF determines the patterns of selectivity to more complex fea-

tures, we generated predictions of location-specific response maps. This

was done by spatially interpolating the fine-scale orientation-tuning map in a

three step process: first, the pure spatial information in the fine-scale map,

obtained by averaging across orientation at each fine-grid location, was

subject to a two-dimensional (2D) nearest-neighbor interpolation (20

interpolation points) followed by a 2D Gaussian smoothing operator

ðs= 2=33 the spacing between fine-grid locationsÞ; second, the pure orien-

tation information in the map, obtained by subtracting the average

orientation response from the measured data at each fine-grid location,

was subject to a 2D nearest-neighbor interpolation (20 interpola-

tion points) followed by a 2D Gaussian smoothing operator

ðs= 4=33 the spacing between fine-grid locationsÞ; finally, the two compo-

nents were combined by addition. The composite stimuli (at each coarse

grid location) were then projected onto this interpolated space. The response

to each component element was read off as the value of the closest orientation

match in the interpolated space at the location corresponding to the center of

the component element. The predicted response to each composite stimulus

was taken as the average of the three component responses. We then calcu-

lated the correlation coefficient, rmodel, between the response patterns in the

predicted map and the observed map. Since we were only concerned with

pattern selectivity and not with rate matching, the correlation measure was

sufficient for our purpose.

To test for the predictive power of the model, we also calculated a null dis-

tribution of the correlation coefficients. This was done by spatially shuffling the

nine tuning curves of the fine-scale orientation map within a 33 3 fine grid that

underlay a coarse grid location (see Figure S5A), generating the predicted

responses from this shuffled map (same procedure as above for the original

unshuffled map) and hence the correlation coefficient between the predicted

map and the observedmap. This shuffling procedure preserved the orientation

tuning at the fine scale while perturbing the relative spatial structure of themap

within a coarse grid location. This procedure was repeated 1,000 times to

give an estimate of the null distribution (rnull-model; see Figure S5B). The

model correlation, rmodel, was tested against the null distribution for

significance (p = 0.05, Bonferroni corrected for M multiple comparison, where

M is the number of significant spatial locations for each neuron). The model
Neuron 78, 1102–1115, June 19, 2013 ª2013 Elsevier Inc. 1113
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was considered to have significant predictive power for a neuron if there was at

least one spatial location that was significant, according to the above criteria.

We also investigated two reduced versions of the pooling model (Fig-

ure S5C). The space-only version was obtained by averaging across orienta-

tion at each fine-grid location (Figure S5C, right upper panel). This model did

not have any local orientation tuning. The orientation-only version was ob-

tained by subtracting the average orientation response (as in the space-only

model) from the measured data at each fine-grid location (Figure S5C, right

lower panel). Thus, this model did not contain any local spatial information.

The model correlations and null distributions for these reduced models were

calculated using the same procedure described above for the full model.

The explained variance of our model was estimated by first calculating the

model correlation, rmodel, as above, but on different jackknifed fractions

of the data. Specifically, we calculated rmodel between the predicted response

map and the observed responsemaps from (1) the full data set, (2) 95%of trials

(3) 90% of trials, (4) 85% of trials and (5) 80% of trials. We then performed a

linear regression on the resulting rmodel values against the reciprocal of the cor-

responding jackknife fraction values (1, 1/0.95, 1/0.9, 1/0.85, and 1/0.8). This

procedure is designed to correct for the bias due to finite data set size (Brenner

et al., 2000; Sahani and Linden, 2003; Machens et al., 2004). The square of the

y-intercept of the regression line was taken as the explainable variance for that

RF location. The explained variances of the reduced space-only and orienta-

tion-only models were calculated using the same procedure.
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