
Behavioral/Cognitive

Human Cortical � during Free Exploration Encodes Space
and Predicts Subsequent Memory

Joseph Snider,1 Markus Plank,1 Gary Lynch,2 Eric Halgren,3,4 and Howard Poizner1,4

1Institute for Neural Computation, University of California, San Diego, La Jolla, California 92093, 2Departments of Psychiatry and Human Behavior and
Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697, 3Departments of Radiology, Neuroscience, and Psychiatry, University
of California, San Diego, La Jolla, California 92093, and 4Program in Neurosciences, University of California, San Diego, La Jolla, California, 92093

Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of � rhythms in
hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex
for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the
difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed
brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and
body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. � phase and
amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated
times. This spatial displacement � autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environ-
ment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no
significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual’s STAcc
maps from day 1 significantly predicted object location recall success on day 2. � was also significantly correlated with walking speed;
however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of
memory-related, spatial maps in humans generated during active spatial exploration.

Introduction
The systematic encoding of spatial location by firing of neurons
within a population creates a “spatial map” (Derdikman and
Moser, 2010). In primates, including humans, spatial maps are
driven by views of the environment (Rolls, 1999), location within
the environment (Ekstrom et al., 2003; Doeller et al., 2008, 2010),
or distance along a trajectory (Cornwell et al., 2008; Jacobs et al.,
2010). Intracranial recording and functional imaging studies in
humans, in which participants use a joystick or button pad to
move through a simulated environment, have consistently shown
increased activity in medial temporal lobe and posterior and me-
dial parietal cortices during spatial navigation (Kahana et al.,
1999; Bischof and Boulanger, 2003; Caplan et al., 2003; Ekstrom
et al., 2005; Cornwell et al., 2008; Kaplan et al., 2012).

Commonly, cell firing during spatial navigation is organized
by � frequency local field potential oscillations. � is critical for the

synchronization and integration of diverse cell classes and corti-
cal regions during spatial learning (O’Keefe and Recce, 1993;
Sirota et al., 2008; Montgomery et al., 2009; Young, 2011). In
addition, � encourages long-term potentiation of synaptic effi-
cacy (Larson and Lynch, 1986; Wills et al., 2010), such as occurs
during “unsupervised” spatial learning (Chen et al., 2010). �’s
low frequency may permit synchronization of widespread brain
regions (Caplan et al., 2003), including posterior parietal cortices
(Byrne et al., 2007). Posterior parietal cortices are critically in-
volved in spatial processing (Andersen et al., 1985; Sakata and
Kusunoki, 1992; Todd and Marois, 2004; Save and Poucet, 2009),
maintain strong connections to the hippocampus (Clower et al.,
2001; Save et al., 2005; Rushworth et al., 2006), are important
nodes in brain networks constructing spatial maps (Ekstrom et
al., 2005; Doeller et al., 2010; Jacobs et al., 2010), and show in-
creased � power during navigation (White et al., 2012). Relative
to rodents, humans may rely more heavily on parietal cortex for
supporting spatial map formation (Shrager et al., 2008).

The likelihood that humans use � driven mechanisms to learn
complex environments through fully active exploration has not
been tested, largely because the head and body restraints required
for electrophysiological recording eliminate the vestibular, so-
matosensory, and proprioceptive brain afferents underlying
construction of spatial maps, body location, and wayfinding
(Berthoz, 1997; Nitz, 2006). Recent experiments in mouse have
shown a strong reduction in spatial map activity and alterations
in temporal coding when animals run with their head fixed in
simulated environments, compared with natural movements in
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the real world (Chen et al., 2013; Ravassard et al., 2013). Indeed,
ambulatory and vestibular self-motion signals are the primary
determinants of the total spatial information per spike of hip-
pocampal place cells (Terrazas et al., 2005). We recorded syn-
chronized EEG, head, and body movement from 13 participants
freely moving about a large-scale virtual environment to test the
hypotheses that an individual’s � activity during spatial explora-
tion recorded over posterior parietal cortex reflects their position
in allocentric space and predicts future memory performance.

Materials and Methods
Experimental design. To test the prediction that subjects organize mem-
ory spatially, we developed a naturalistic paradigm that required multi-
ple, complex trajectories through an extended space and placed heavy
demands on memory. Synchronized recordings of 3D head, hand, and
torso movements, via optoelectronic and inertial sensors, and 72 channel
active electrode EEG recordings were obtained from 13 subjects (3 fe-
male; age [mean � SD] � 25 � 4 years) as they explored a novel virtual
environment (Fig. 1) (for details of the method, see Snider et al., 2013).
Subjects wore a wide field-of-view head-mounted display and moved at
will in a large-scale, richly textured room (�4 � 5 m) containing numer-
ous objects resting on shelves, tables, and the floor (Fig. 1A1). This virtual
room, located on an “aircraft carrier,” was the same size as the real world
space in which subjects were walking (Fig. 1A2).

Sessions lasting 2 h were conducted on successive days. The first day
was dedicated to exploration, and the second day to testing subjects’
memory of the environment. By maintaining the subjects’ naiveté about
the memory aspect of the experiment on day 1, the knowledge of the
environment on day 2 came from unsupervised learning. On day 1, sub-
jects first investigated the room for 10 min with no instruction, except
“explore the environment.” This taskless “free exploration” block was
followed by five blocks with a task. Opaque virtual bubbles were placed
around 39 different objects in the room. The subjects walked up to one
bubble at a time (indicated by turning green in random order) and
popped it by touching it with their hand, thereby uncovering the object
underneath (the objects had been present during the initial exploration,
but not obscured by the bubbles). As a cover task, subjects indicated their
interest in the object using a virtual slider. A block ended when all the
objects were uncovered and visible. For each of these five “interest”
blocks, the order of bubble popping varied randomly, but the objects
remained the same, thus ensuring both multiple paths through the vir-
tual environment (VE) and opportunity for unsupervised learning of the
object locations. Subjects proceeded at their own pace and could take
breaks at any time, but they were encouraged to do so between blocks.

The following day (day 2), the subjects entered the same virtual room.
However, the locations of 13 of the 39 objects were randomly swapped from
their positions on day 1. As on day 1, subjects walked to a bubble covering an
object when it turned green and touched the bubble exposing the object.
Subjects then indicated how certain they were that the object was the same
one that was in that location on day 1, again by adjusting the virtual slider.
This process was repeated over 5 blocks of trials, with each block lasting 5–8
min. A different set of 13 objects were misplaced in each block.

Virtual environment. The hardware supporting the VE consisted of a
24 camera PhaseSpace Impulse active infrared-emitting diode (IRED)
motion capture system (www.phasespace.com), providing 3D position
information of the right hand, head, and torso, an Intersense (www.
intersense.com) InertiaCube3 orientation sensor for head orientation, a
20 speaker Ambisonic Auralizer Sound System (www.worldviz.com),
and a Sensics (www.sensics.com) xSight 6123 head-mounted-display
(HMD). The HMD provided a panoramic, stereo view of the VE (120 deg
horizontal field of view and 45 deg vertical), creating a strong feeling of
presence in the VE (Snider et al., 2013). A questionnaire was given to the
subjects (12 of 13 subjects completed the questionnaire) to assess their
engagement in the VE (Witmer et al., 2005). It specifically contained
questions pertaining to “involvement,” such as “How much were you
able to control events?” or “How involved were you in the virtual envi-
ronment experience?” Responses to questions about haptic feedback and
auditory cues, none of which was present, were disregarded. The VE was
rendered via custom scripts written for Vizard 3.0 (www.worldviz.com)
with a total end-to-end latency of �40 ms (Snider et al., 2013) and spatial
precision on the order of millimeters. All cables (the EEG fiber optic
cable, the InterCube3 RJ10 cable, and the thick 11-mm-diameter HMD
cable) went up through the ceiling in the center of the room with enough
free length to comfortably explore the entire space while minimizing
physical interference with the wires (Fig. 1A).

The VE room had a large empty space in the middle surrounded by
shelves of objects. The objects were richly detailed and textured 3D ren-
derings, some of which were created from photographs taken on the
U.S.S. Midway museum (www.midway.org). All objects were appropri-
ate to the context of an aircraft carrier setting (i.e., there were no “blue
rabbits”), but there were tools, fire extinguishers, life preservers, coffee
cups, and so forth (Fig. 1B). The empty space in the center of the VE
coincided with empty space in the actual room (Fig. 1), and subjects were
instructed to remain in the room between the shelves. Exits were ob-
structed with virtual obstacles, except for an open virtual door at which
all blocks began. Subjects could look through the door to see a virtual
flight deck but were instructed not to go through it. Subjects appeared to
move at a normal, unhurried speed and navigate very naturally through
the environment. All of the interactions occurred in a manner that
avoided touching any objects in the real environment to minimize the
influence of haptic-vision mismatch.

The position of the subject’s head, as tracked by the IRED system, and
its orientation, from the inertial sensor, moved the camera rendering the

Figure 1. A, Experimental environment. Subjects freely explored a virtual storage room (A1,
bird’s eye view), matched in size (4 � 5 m) to the physical room in which the subject was
present (A2). The subject walked to green bubbles, which popped when touched by the right
hand, revealing the hidden object. The virtual room was presented on a head-mounted display
(A3). B, Sample � sign map. EEG data were recorded continuously while the subject walked in
the virtual environment. The path from a single session is color coded by the sign of the 6 Hz Haar
wavelet (� frequency). The sign of the signal aligned across two traversals (inset, red and green
arrows) that occurred at different times.
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VE through the environment in real time and with a one-to-one mapping
of real onto virtual space. The IRED and inertial sensors were combined
to maximize the responsiveness and stability of the system for improved
immersion. The subjects moved through the environment as though they
were really in the virtual room, as a sort of completely immersive simu-
lation, with the VE precisely and consistently controlling the environ-
ment. The subject’s hand was also tracked and rendered as a visible,
5-cm-diameter orange ball, which the subjects used to pop bubbles and
indicate interest (or confidence) on a continuously variable slider that
appeared in the VE after bubble popping. The main focus here is on the
relation of the EEG to the subjects’ spatial location within the VE during
the intervals in which the subjects were walking between objects (EEG to
exposing the objects will be reported separately). To isolate walking in-
tervals we calculated the speed of the head from a least square, linear fit to
a 300 ms sliding window to estimate the slope of the position. Any speed
exceeding 0.2 m/s was considered walking. The resulting paths (Fig. 1B;
see Fig. 4A) were composed primarily of long traversals of the room when
the subject walked from bubble to bubble or to the middle of the room to
find the next target bubble. These data emphasize spatial awareness of
and navigation within the room over responses to individual items in the
room, and, when combined with the EEG (described below), allow us to
focus in on spatial map generation.

EEG. Scalp EEG recordings reflect coordinated activity in large cortical
assemblies, but they are also sensitive to artifacts due in large part to eye
movements and muscle activity, especially from the region of the neck
and face, as well as pickup of stray fields from the environment. Although
these artifacts in the EEG cannot be totally prevented, they can be mini-
mized in the following ways. First of all, we used the 64 channel BioSemi
ActiveTwo system (www.biosemi.com), which features electrodes that
contain individual preamplifiers, eliminating the wire from the electrode
to the first amplifier, and thus minimizing the pickup of extraneous
signals in the physical space and those generated by movement of the wire
relative to the electrode. Eight external electromyographic (EMG) elec-
trodes were added to help identify muscular artifacts and were placed as
follows. Four electro-oculogram (EOG) electrodes were mounted on the
supraorbital and infraorbital ridges of the right eye as well as lateral to the
outer canthi of right and left eyes. Two electrodes were further attached
to the right and left neck at the height of the seventh cervical vertebra
monitoring activity of neck muscles, particularly the trapezius. Two elec-
trodes were mounted on the left and right mastoids, the average of which
was used as reference for all analyses.

Movement artifacts from muscle activity were further minimized by
encouraging subjects to walk at a comfortable, steady pace (lack of time
pressure) and reminding subjects to avoid excessive facial movements,
such as smiling, frowning, or grimacing. Walking speed in our experi-
ment did not exceed 1.25 m/s, and typically was much slower with mean
speed during walking of 0.5 � 0.2 m/s (mean � SE across subjects and
blocks). Also, at the start of the experiment, just after setting up the EEG,
but before entering the VE, subjects were shown how shrugging their
shoulder or clenching their teeth caused large, easily visible artifacts in
the EEG. One experimenter monitored the EEG traces in real time during
the experiment and told the subjects if muscular noise became apparent.

Any artifacts resulting from muscular and eye activity that did remain
in the EEG were compensated for or removed through offline filtering
and data preprocessing as follows. Initially, to be as close to the data as
possible and avoid any potential nonlinear interaction with advanced
signal processing, we analyzed a single electrode located over central,
posterior parietal cortex (scalp site Pz, International 10 –20 system).
Analysis of the signal at the single electrode Pz was preplanned based on
two considerations. First, Pz strongly reflects synchronized activity in
parietal cortices, where we hypothesized the existence of a detectable
spatial signal (as described in the Introduction). Second, Pz is minimally
affected by muscular artifacts because it is relatively far away from both
the neck and eyes (Goncharova et al., 2003; Schlögl et al., 2007; Nolan et
al., 2011). We rereferenced recordings from Pz to the average mastoids,
high-pass filtered at 0.25 Hz (Kaiser window, ripple � 10 dB, width 0.1
over Nyquist, and SciPy signal library) to eliminate static drift, and took
a Haar wavelet transform at 6 Hz, which is the middle of the 4 – 8 Hz
human � frequency band. To maintain the maximum amount of infor-

mation about the underlying signal, the entire wavelet coefficient, in-
cluding amplitude and phase, was used for the analysis (for evidence for
the central importance of phase as well as amplitude in scalp EEG, see
Whittingstall and Logothetis, 2009; Ng et al., 2013). To be clear, we did
not turn the wavelet coefficient into power (or phase) separately; instead,
we analyzed the raw coefficient, the product of the signal with the 6 Hz
Haar mother wavelet at all time points. The wavelet data were then
aligned with the position of the subject’s head in 2D space by downsam-
pling the 1024 Hz EEG data onto each sample point from the 120 Hz
position data (10 ms time-locked average). The height of the head could
be ignored because it varied only �5 cm.

The primary analysis and planned comparisons used only data from
Pz. To conduct exploratory and follow-on analyses, the high-density 70
channel EEG-EMG data were processed with extended infomax indepen-
dent component analysis (ICA) (Bell and Sejnowski, 1995). ICA is a blind
source separation procedure that separates the EEG into a set of statisti-
cally maximally independent components, some of which represent elec-
trocortical sources, whereas others represent eye movements, neck and
other muscle sources, and other artifacts (Jung et al., 2000). The process-
ing steps for running ICA were as follows. First, the data were high-pass
filtered at 1 Hz and low-pass filtered at 30 Hz using the default fir filter in
EEGLAB (Delorme and Makeig, 2004). Second, the onset and offset of
walking intervals were identified by looking for 1 s or longer intervals
when subjects maintained a speed �0.2 m/s. Then, these intervals were
set as events in the EEG data using custom MATLAB scripts for EEGLAB
v10.2 (MathWorks) (Delorme and Makeig, 2004). To generate epochs of
equal length, we covered the walking intervals by 1 s events starting 0.5 s
before the onset of walking (e.g., if walking onset and offset were at 3.1
and 5 s, then the 1 s events started at 2.6, 3.6, 4.6, and 5.6 s). These data
were then processed using ICA to identify independent components.
Seventy such maximally independent components were thus obtained.
Eye movement and muscular sources were readily identified by spatially
focal scalp projection, distribution or source location outside of the
brain, and/or power spectrum with high-frequency activity (Jung et al.,
2000; Delorme and Makeig, 2004; Gwin and Ferris, 2012; Ma et al., 2012).
The time course of these independent components (ICs) was then in-
spected for periods of transient noise that were marked for removal in
later processing. The weight matrix for the parietal ICs was applied to the
raw data, and the result was fed into the same algorithm that was used on
the Pz data (0.25 Hz high-pass, 6 Hz Haar, downsampled onto position).
sLoreta (Pascual-Marqui, 2002; McMenamin et al., 2009) was used to
estimate the current source density of the mean IC activity.

Autocorrelograms. A quantitative measure of the relationship between
� oscillations and relative position in space was obtained by calculating
autocorrelations of Haar wavelet coefficients at all pairs of discretely
sampled positions at fixed directional separations with respect to each
other (Fig. 2). All pairs of position points (usually �30,000 samples) were
binned into histograms dependent on their relative position (i.e., change
in their x and y coordinates). The binning was done with a custom
NVIDIA CUDA (www.nvidia.com/cuda) application to handle the large
number of comparisons. There were six total histograms recording w1,
w1

2, w2, w2
2, w1w2, and N, where subscripts 1 and 2 indicate two elements

of the wavelet values from different times. These values were then used to
calculate the autocorrelation at each relative position as follows:

C��x, �y	 �

n
w1w2� � 
w1�
w2��

��
n�
w1
2� � 
w1�

2	�
n�
w2
2� � 
w2�

2	
,

where the brackets indicate histograms at each relative separation. We
enforced a time delay such that Measurement 2 occurred at least 10 s after
Measurement 1, so that correlations could only come from different
traversals of the room. This removed a trivial peak at zero relative shift
(due to the correlation of the 6 Hz signal with itself after 1/120 s) and
made the autocorrelograms not necessarily mirror symmetric because
Time point 2 was in all cases necessarily after Time point 1. All of these
choices were made to be as conservative as possible in constructing the
autocorrelograms.

The above procedure for calculating the autocorrelation of a signal was
taken from the literature (compare Hafting et al., 2005). However, the
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signal strengths we expected necessitated a more rigorous estimation of
the statistical significance of the autocorrelation maps. Thus, we devel-
oped a two step rebinning procedure that first oversamples the spatial
autocorrelation maps and then combines the local oversampled data to
generate means and SEs. In the first analysis step, spatial autocorrelation
maps were calculated as above with spatial resolution of 1 � 1 cm. Be-
cause 6 Hz activity in subjects moving with an average speed of 0.5 � 0.2
m/s was analyzed, the signal was stationary (and thus trivially locally
correlated) over length scales on the order of 0.5 m/s/6 Hz � 0.083 m or
�10 cm. Thus, a grid size of 10 � 10 cm was chosen as the final bin size
to represent local estimates of the autocorrelation. The data from the
smaller 1 � 1 cm histogram were rebinned into the larger 10 � 10 cm
bins to estimate both the local mean and error. To avoid edge effects at
large separation, any 10 � 10 cm bins with fewer than 1000 points per bin
in the larger histogram were rejected (the average number of points per
bin was 2.11 � 10 5, with SD 1.35 � 10 5). Plots show the autocorrelo-
gram averaged across the 100 1 � 1 cm bins within each 10 � 10 cm bin,
divided by the SE across those 100 bins (see Fig. 4) plotted as statistical
maps for the different relative displacements. This is helpful for presen-
tation purposes because SEs vary across the room due to differential
sampling (the space was longer in one direction than the other). The
resulting numbers cannot be strictly interpreted as t scores because the
autocorrelations in even the larger bins are not necessarily independent
measures. Thus, conclusions regarding statistical significance are based
on resampling statistics described below. However, one should note that
the local error estimate obtained in this way is similar (and actually more
conservative) than that obtained with bootstrapping methods applied to
the same data as described below. For ease of description, the “map
strength” of a spatial autocorrelogram was defined as the SD of all the
values in all of the bins. Higher map strength corresponded to more
spatial displacements with nonzero autocorrelation. We term this proce-
dure “spatial displacement � autocorrelation” or “STAcc.”

Statistical tests and control procedures. A resampling procedure was
used to estimate the level of autocorrelation that would be expected

under the null hypothesis that there was no consistent relationship be-
tween � activity and spatial displacement. Under the null hypothesis, the
EEG data from any subject mapped onto the paths from any other subject
would generate statistically identical autocorrelations to the actual data.
The autocorrelograms were calculated as above for the resampled data-
sets. This procedure was performed on the 6 Hz wavelet of Pz activity, by
swapping the EEG and path data across all possible pairs of subjects
(�8300 total resampled autocorrelation maps). Because block durations
were not constant, the EEG from approximately the matching time
across subjects was used for downsampling the EEG onto position data as
described above. We verified that keeping only 10% of the swaps was
sufficient and applied the technique to the eye-movement sensitive EOG
data as well, using 10% of all possible pairs (�830 total). Significance was
tested by constructing histograms of all pixels of the autocorrelograms of
the resampled and actual datasets and measuring the Kolmogorov–Smir-
nov distance between the resampled and original data (length 100,000
subsamples of both was compared 1000 times because it was not compu-
tationally feasible to use the entire dataset). The p values from the Kol-
mogorov–Smirnov test were averaged, resulting in an estimate of the
probability of the null hypothesis. For two sequences coming from the
same distribution, the Kolmogorov–Smirnov p value is evenly distrib-
uted from 0 to 1; thus, a mean p value of 0.5 would be expected if the two
sequences came from the same distribution. The absolute value of the
correlations was also tested with a t test. All statistics were performed in R
version 2.15.2 (http://www.R-project.org), ANOVAs were run with the
“ez” package, and linear mixed models (LMMs) were fit using the “lme4”
package. For the LMMs, the � 2 test was used to compare models with and
without parameters of interest. LMMs were only used to test for a rela-
tionship between speed and wavelet power (both continuous variables).

Although the bootstrapping procedure described above was the most
rigorous method to estimate the probability under the null hypothesis, it
was too computationally intensive to perform for every comparison. In
these other comparisons, especially across frequencies other than 6 Hz,
we calculated the expected results under the null hypothesis by replacing
the EEG with a constant sine wave at the frequency of interest. This
presented the autocorrelogram algorithm with an oscillatory signal that
had no spatial correlation, by construction, but maintained similar local
correlations. The rate of change of the sine wave slowed with frequency,
which lowered the effective sample rate (the number of periods of the
underlying oscillation). Thus, because the path length remained the
same, the baseline error increased inversely with frequency. To estimate
the actual signal in the EEG data when the bootstrap procedure was
impractical, the sine wave baseline was subtracted. The sinusoidal base-
line procedure approximates the expected baseline for reasonably
smooth data, such as filtered EEG data, but it significantly underesti-
mates the impact of repeated punctual events, such as eye movements
(Fig. 3A), and bootstrapping is the best alternative.

In cases of behavioral correlation with the memory score, there was a
significant ceiling effect because some subjects had a nearly perfect mem-
ory score. Therefore, nonparametric tests were used: Spearman correla-
tion for regression onto continuous variable or permutation testing for
ordinal variables. The permutation analysis generated an expected base-
line distribution of correct memory for the individual objects assuming
the null hypothesis that no relationship between object and memory
exists. To account for any potential subject and block variability, we
shuffled the object identities within each subject and block but left the
number of correct responses the same. This shuffling explicitly broke any
potential dependence of memory on object identity while maintaining
individual subject tendencies by block. We then used the Kolmogorov–
Smirnov test to compare the distribution of fraction correct for each
object calculated from the shuffled data to the distribution of fraction
correct actually observed for the unshuffled objects. This was repeated
100 times to give an average probability of the null hypothesis. The per-
mutation test was applied both to the object identities (i.e., cup or
wrench) as well as the spatial locations available for the objects (i.e., shelf
or table).

Figure 2. Construction of the autocorrelation maps. The two blue/red lines indicate walking
trajectories that happen to pass parallel to one another. The color represents the EEG signal
along the trajectory. All the points labeled w1 are a fixed distance, in both x and y, away from the
points labeled w2. These points at the fixed separation are then plotted against each other, and
their correlation is estimated. The value of the correlation is then put into a map of relative
space. The procedure is then repeated for every other separation on the autocorrelation map to
build the complex maps (e.g., Fig. 4B).
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Results
Behavioral
We studied subjects navigating in a fully immersive, ambulatory
VE consisting of a richly textured room with numerous 3D ob-
jects located on shelves, tables, and the floor. Except for an initial
free exploration block on day 1, objects were covered in opaque
bubbles, one of which was colored green. Subjects walked to the
green bubble and touched it. The bubble then disappeared expos-
ing the object. On day 1, subjects rated how “interesting” each
object was using a virtual slider. On day 2, subsets of the objects
were swapped in location on multiple blocks of trials. The sub-
ject’s task was to rate whether each object had been in that loca-
tion or not on the previous day. Along with head, body, and arm
position data, 64 channel EEG and 8 channel EMG were recorded
throughout the sessions. We evaluated memory on day 2 result-
ing from unsupervised learning on day 1, by asking whether the
subjects recognized that the spatial locations of certain objects

had been switched on day 2. Given that a large number of items
were sampled, and then only briefly, this paradigm placed signif-
icant demands on memory, as evidenced by the range of retention
scores across subjects on day 2: 76 –96% correct (chance � 50%).
Because a different 13 of the 39 objects were shuffled for each of
the 5 blocks testing memory on day 2, the subjects’ performance
improved somewhat over blocks from an average of 79 � 9% on
block 1 to 89 � 8% on block 5 (mean � SD, F(4,48) � 6.92, p �
0.0002).

Immersion in the VE was evaluated with a questionnaire
(Witmer et al., 2005). Average immersion scores were 5.6 of 7 (SD
0.8), which reflects very strong immersion (Usoh et al., 2000).
Additionally, qualitatively, subjects were observed to move natu-
rally and confidently through the environment. No correlation of
the judged immersion in the VE with memory performance was
observed, either across all questions (r � 0.18, p � 0.59, Spear-
man test) or within the targeted “involvement” questions (r �

Figure 3. EEG activity during walking. A, Concurrent EEG traces from a 3 s walking interval from one subject. Walking onset starts at the green line and ends at the red, with 0.5 s intervals marked
off by dashed vertical lines. The lines on the top row (light and dark blue) indicate eye movement-related activity with sources (left) showing left and right eye movements. The data from the Pz
electrode are in the middle, and a single parietal IC is on the bottom. The yellow region represents a saccade where the eye fields suddenly switch signs (the saccade [S]) then slowly revert (head
adjustment [N]) followed by another saccade (second S). The eye and neck movements do not have a noticeable effect on the Pz or parietal ICs. B, All the brain ICs from all the subjects were averaged
to show the central-posterior-midline parietal localization of the activity. C, sLoreta localization of the current source density corresponding to the mean back-projected IC (B). Orange represents
regions of significant activity. The estimated location of the source is the medial aspect of the superior parietal cortex (precuneus).
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0.21, p � 0.54, Spearman test). Thus, any variations across sub-
jects in judged immersion in the VE played an insignificant role in
the performance of the task.

As a cover task on day 1, subjects rated their interest in the
objects. These data also were used to verify that the objects were
not individually memorable. The subjects’ rated interest in the
objects on day 1 showed no relation to the memory performance
on day 2 (r � 0.06, p � 0.72, Spearman test). Additionally, an
ANOVA was performed to measure dependence of the rated in-
terest of the objects across subjects and showed that no object was
consistently rated as either interesting or not (F(38,468) � 0.63, p �
0.96). Furthermore, permutation testing of the object–memory
relationship accepted the null hypothesis (p � 0.14), indicating
that objects had similar memorability. Also, the permutation test
applied to object placement location (i.e., table or shelf) accepted
the null hypothesis of no relation to memory (p � 0.82). Thus,
neither the individual object identities nor their placements
could account for the observed memory performance.

ANOVAs showed that the following path descriptors were
similar across subjects and blocks (after free exploration): total
time spent walking (F(4,60) � 0.84, p � 0.50), total distance tra-
versed while walking (F(4,60) � 1.7, p � 0.17), and average walk-
ing speed (F(4,60) � 1.9, p � 0.13). Additionally, the speed along
the walking intervals (when subjects maintained a speed of at
least 0.2 m/s for at least 1 s) was compared at 11 positions (0 –5%,
5–15%, …95–100%) along the interval and showed no variability
across subjects for any of the positions (p � 0.25, familywise
error corrected, Kolmogorov–Smirnov tests). Speed followed a
bell-shaped curve with a peak speed of 0.63 � 0.02 m/s �60% of
the way along a walking interval. Thus, paths were statistically
similar across subjects, and movement variability cannot explain
the observed wide range of memory.

Parietal scalp EEG during movement
Figure 3A shows an example of EEG data during movement. A
walking interval (speed � 0.2 m/s) initiated at the green line and
continued for �6 s (red line). Over that time interval, eye move-
ments and neck muscle activity were present. An example is high-
lighted in the yellow section and is easily visible in the eye
movement-related IC (Fig. 3A, top row). The subject made a
saccade (S) with an accompanying rapid change in eye potential,
followed by a head movement (N) while the gaze remained fixed,
and finally another saccade. This sequence of eye-neck move-
ment was very common during this virtual exploration and could
have dominated the EEG. Artifacts were accounted for initially by
using the Pz electrode, which was far from the eyes and only
minimally affected as seen in Figure 3A (second row) where the
eye movements do not bleed through to the Pz data. The data
were also cleaned with ICA, and independent components with
parietal activity (Fig. 3A, bottom row) also showed little relation
to the eye activity. Further, all three of eye, Pz, and parietal IC
activity were analyzed separately in the main procedure below.

The ICA procedure was run on the walking intervals from all
subjects, and 11 of 13 subjects had scalp ICs identifiable as pari-
etal as determined from their power spectrum and scalp distribu-
tion (mean � SD, 2.2 � 0.8 ICs per subject). On average, the
sources were located on the midline over posterior parietal re-
gions (Fig. 3B,C), consistent with expectations of posterior pari-
etal activity during spatial exploration and representation of 3D
space (Andersen et al., 1985, 1995; Save et al., 2005; Sato et al.,
2010; White et al., 2012) and consistent with the location of elec-
trode Pz, over midline posterior parietal cortex. The mean activ-
ity map was analyzed using sLoreta to estimate possible

localization of generating cortical sources. The estimated recon-
structed source was localized in the medial aspect of the superior
parietal cortex (precuneus, BA 7/31, MNI coordinates: x � 5, y �
�75, z � 50) (Fig. 3C).

� autocorrelograms are related to space
Structure was evident in plots of the subjects’ location versus
ongoing � sign (Fig. 1B, highlighted region) or complete � wave-
let coefficients (Fig. 4, left column). For example, in the high-
lighted region of Figure 1B, the pattern of red (positive
coefficient)-green-red is aligned on the two paths that happened
to be parallel, even though the subject traversed these paths at
very different times. The significance of the apparent spatial
structure was tested by calculating the autocorrelation of the
wavelet coefficient with spatial displacement (see Materials and
Methods; Fig. 2). Briefly, all possible pairs of sample points with a
given spatial displacement were autocorrelated with a robust pro-
cedure that resulted in both the correlation coefficient and an
estimate of its error. The autocorrelation procedure was repeated
for spatial separations with 10 cm step sizes (i.e., …�10, 0,
10…cm in x and …10, 0, 10… cm in y) to construct “spatial
displacement autocorrelation” (STAcc) maps. For visualization,
the STAcc maps were plotted as t values (mean � SE, Fig. 4, right
column). In some subjects, STAcc maps showed large regions of
significant autocorrelation or anticorrelation, which appeared as
mottled patterns of red and blue on the green background. There
was no obvious structure to the regions of significance. These
differences between subjects were quantified by measuring the
SD of the autocorrelation at each separation (each pixel in the raw
map) to generate a “map strength” where a higher score indicated
a more highly differentiated spatial map than a lower score. An
ANOVA of the map strength versus block and day across subjects
showed that map strength increased from 0.022 � 0.005 to
0.026 � 0.007 from block 1 to 5 (F(4,48) � 4.04, p � 0.007) but did
not depend on day. Importantly, and somewhat unexpectedly,
the sharpness of the maps varied markedly across subjects, de-
spite the absence of evident differences in amount of exploration
or trajectories. This variability is visually apparent in the second
column of Figure 4 where the first two examples exhibited large,
mottled spots of significant activity, but the last two showed al-
most none. The � autocorrelograms in Figure 4 thus appear to
indicate that oscillations at two locations were systematically re-
lated to the vector displacement between those locations. Further
statistical tests and quantification supporting this result are pre-
sented below.

Control tests
The absolute values of the correlations were small, �0.05, al-
though on par with those seen in fMRI experiments (Doeller et
al., 2010). Thus, we performed a further set of tests to verify that
the elevated spatial autocorrelations were not artifactual. The
simplest method was to replace the actual EEG data of a subject
with a sine wave at 6 Hz (i.e., a false signal with no spatial infor-
mation or correlation with the subject’s position in space, but
having the same frequency as the 6 Hz wavelet). Using the sine
wave instead of an actual electrophysiological signal as recorded
over medial posterior parietal cortex destroyed the correlation
signal, and the autocorrelograms became flat (Fig. 5A2). This test
controls for occult correlations that might be inherent in the
multistep signal processing and analysis procedure.

The spatial autocorrelation also was massively reduced by au-
tocorrelating a wavelet coefficient in the � frequency band (20
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Hz) with relative position in space (Fig.
5A1). Thus, if the 6 Hz � spatial autocor-
relation is artifactual, it must be an artifact
that is frequency-specific. Conversely, the
signal was still present at a neighboring
electrode (CPz, located �3– 4 cm anterior
to Pz), which produced results compara-
ble to those obtained at Pz (Fig. 5A3).
Thus, if artifactual, the artifact extends to
an adjacent electrode. Finally, similar re-
sults were obtained using ICA compo-
nents with high weights of electrodes over
midline parietal regions (Fig. 5A4; IC with
increased weights over central, posterior
parietal areas). Thus, the responsive signal
appears to arise in a coherent pattern of
activity over a set of electrodes. Overall,
these control tests render unlikely an arti-
factual origin of the observed � spatial
autocorrelation.

Swap tests and resampling statistics
The most definitive verification of the au-
tocorrelograms came from projecting the
EEG from one subject onto another sub-
ject’s path and then computing the auto-
correlogram. Because the subjects were
constrained by the task to take qualita-
tively similar paths walking from bubble
to bubble, they had similar movements
and environmental interactions, but pre-
cise details about their paths were dissim-
ilar because object order (and thus subject
trajectory, footfall time, location in the
room, etc.) was different across subjects.
The intersubject swapping procedure did
indeed flatten the autocorrelograms (Fig.
5B1–B4). This elimination of the autocor-
relations by projecting one subject’s EEG
onto another subject’s path is a strong in-
dication that the structure in the autocor-
relograms between EEG and path within
each subject, as seen in Figure 4, is unlikely
to be artifactual. In addition, we performed
all possible combinations of swaps of EEG
and paths across subjects to generate a boot-
strap estimate of the correlation that would
be expected under the null hypothesis that
there is no relationship between EEG and
displacement (see Fig. 7A). The variance of
that histogram was a bootstrap estimate of
the overall SE because the larger the vari-
ance, the greater the number of higher cor-
relation values. The bootstrap estimate,
�0.005, agreed reasonably well with the lo-
cal SE estimate of �0.01, indicating that a
sufficient number of swaps were per-
formed. The fact that the peak correla-
tions were 10 times larger than the
bootstrapped error emphasized the robustness of the autocor-
relograms. The histogram of map strengths (SD of the bins
from an autocorrelation map, methods) from actual subjects
was significantly different from swaps ( p � 10 �4, Kolmogo-

rov–Smirnov test), and actual subjects showed higher correla-
tion than swapped data (3.68 � 0.06 times larger, t � �461,
df � 228462.2, p � 2.2 � 10 �16, t test). In all subjects, the
values in the spatial autocorrelograms were greater than ex-

Figure 4. Spatial autocorrelograms. Left column, Head paths taken over a 5–10 min exploration block when subjects were interacting
withobjects locatedontheshelvesandtable;colorrepresents6HzHaarwavelet.Thelayoutoftheroomissketchedonthetopleft(compare
withFig. 1B). Right column, Corresponding statistical maps of autocorrelograms at each directional displacement. All data are from the first
day when the task was to rate “how interesting” the object was. Red and blue represent displacements with consistent� (�mean/SE��3).
Correlation was relatively high and structured in some subjects (top, 2, 1, and 8) but not others (bottom, 2, 2, and 5).

15062 • J. Neurosci., September 18, 2013 • 33(38):15056 –15068 Snider et al. • � Representation of Space



pected by chance (Fig. 6B), and in some the mean values at
most displacements were several times larger than the local
SEs.

Speed correlates with � power but not spatial maps
Figure 6A shows the dependence of � power on speed for the same
four subjects in Figure 4 all from day 1 data. Each point represents

a walking interval in which speed was �0.2 m/s for at least 1 s.
Subjects had an average of 79 � 3 (mean � SE) walking intervals
per block. There was a significant correlation between � power,
and speed in 10 of 13 subjects over the whole interval (p � 0.05)
and an LMM showed that the � power was better modeled with
speed as a factor (� 2

(1) � 12.35, p � 0.00044). This relationship
also held when the walking trajectories were broken up into 1 s

Figure 5. Validation tests. A, Additional tests of signal specificity, obtained in a subject with strong autocorrelations (Subject 8, day 1, block 2). The signal is decreased by (A1) analyzing with a
20 Hz instead of a 6 Hz wavelet or (A2) replacing the EEG with a pure 6 Hz sine wave. Conversely, the signal is preserved when (A3) it is calculated at a neighboring electrode (CPz) or (A4 ) using ICA
to isolate a parietal source. B, Autocorrelograms calculated using one subject’s EEG on another subject’s path. B1–B4 show representative examples of all combinations EEG and path from good
performers of the memory task (Subjects 6 and 8) and poor performers (Subjects 5 and 13). The lack of a signal indicates that the autocorrelograms are specific to the individual and are not artifacts
of the analysis routines.

Figure 6. Speed during walking related to � and space. A, The � power over walking intervals of at least 1 s was estimated for all walking intervals on day 1. Each point corresponds to one walking
interval for the subject. The line shows the least-squares line (SE shaded) for log power versus speed. � power increases with walking speed. B, The autocorrelation calculation was used to estimate
the spatial dependency of speed. Unlike � (Fig. 4, right column), these have a strong peak at the center, indicating that, when subjects were at the same spatial location (0,0 in relative space), they
tended to be moving at the same speeds. Negative correlations are observed at distances equal to about half the average distance across the room, reflecting the fact that individuals sped up and
then slowed down during typical trajectories.
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intervals to estimate a more “instantaneous” power versus speed
relationship: 11 of 13 showed significant correlation (p � 0.05)
and the LMM was significant (� 2

(1) � 11.57, p � 0.0007). Thus,
� power increased significantly with speed.

Figure 6B shows the spatial autocorrelation of the speed. This
was calculated in exactly the same way as those for the scalp
electrode data (Fig. 4, second column). Interestingly, these do
show some structure with a peak near the center. In relative space,
the center of the autocorrelation maps corresponds to returning
to exactly the same point in absolute space. Thus, the peak near
(0,0) in Figure 6B indicated that subjects tended to walk at the
same speed when they returned to the same spot. This is consis-
tent with subjects slowing down to approach objects and walking
faster near the center of the room. The autocorrelation was
slightly extended in the x-direction because the room was also
extended in that direction. Thus, subjects approached (and
stopped/started at) bubbles with more variability in the
x-direction than the y-direction simply because there was more
room in x than y. Negative correlations are observed at distances
equal to about half the average distance across the room, re-
flecting the fact that individuals sped up and then slowed
down during typical trajectories. These speed autocorrelation
maps were completely unrelated to the � maps, both qualita-
tively (i.e., the maps in Figure 6B were from the same data as
those in Figure 4, right column) and quantitatively. Compar-
ing the two maps from electrode data and speed data pixel by
pixel within each subject and block, there was almost no cor-
relation (mean p � 0.60, unadjusted; 1/77 unadjusted p
�0.05; and mean � SD, r � 0.0005 � 0.002). Thus, the speed
autocorrelation did not drive the electrode results. Further-
more, the memory on day 2 was not predicted by the speed
map strength (r � 0.28, p � 0.36, Spearman), and thus did not
explain the observed correlation between memory on day 2
and electrode map strength on day 1 described below.

Strength of � autocorrelations predicts subsequent memory
As noted, synchronization at the � frequency is thought to coor-
dinate the hippocampal-parietal network activity underlying
spatial mapping and to promote lasting synaptic modifications
underlying map retention. We therefore asked whether the
strength of the relationship between � and spatial location pre-
dicted subsequent memory for the environment. Indeed, one of
the most striking aspects of the autocorrelograms was that they
varied from subject to subject; for example, Subject 8 in Figure 4
showed more structure in the form of regions of red and blue
than did Subject 5. The greater the variation in the autocorrela-
tions across spatial displacements, the greater was the structure in
the map, as quantified by map strength (variance of each pixel in
the autocorrelation map). The map strength for individual sub-
jects on day 1 significantly predicted the subjects’ percentage cor-
rect identifications on day 2 (r � 0.61, p � 0.027, Spearman test;
Fig. 7B). The map strength was calculated identically for the Pz
data on day 2, during the recall phase of the test, and these showed
no correlation with the results of the memory test (r � 0.099, p �
0.75, Spearman test; data not shown). Thus, the unsupervised
learning stage of the experiment on day 1 was the most important
for developing spatial awareness for reliable object-location
memory. In summary, not only were the observed autocorrela-
tions significant, but they also predicted the subsequent memory
performance of the subjects, consistent with the hypothesis that
spatial maps contribute to memory performance.

Eye movements
One source of potential confound present in EEG studies is eye
movements (Jung et al., 2000). To test whether eye movements
were driving the spatial autocorrelations, the same autocorrela-
tion analysis was run on an EOG electrode above the right eye.
EOG detects changes in the electric field around the eye mostly
resulting from eye movements and blinks. The results did show
autocorrelations of similar overall strength to the Pz results; how-
ever, and most importantly, the eye movement correlations
showed the same strength when swapped across subjects (p �
0.48, Kolmogorov–Smirnov test; Fig. 8A), indicating that their
associated autocorrelations were artifacts of the signal itself, and
not unique to the subjects. The width of the autocorrelation his-
tograms in Figure 8A was the same regardless of swapping (t �
�1.5, df � 479240.5, p � 0.13, t test). The eye movements were
dominated by relatively few large deflections (Fig. 3A) that ap-
peared as strong, punctate events in the Haar transformed signal.

Figure 7. Data from an electrode placed above midline parietal (Pz). A, To quantify strength,
the autocorrelation value at each relative position (10 � 10 cm bins) is binned into a histogram
(blue, dashed). As a baseline estimate, we swap EEG and path across subjects (red, solid). The
two histograms differ significantly ( p � 1.e�4, Kolmogorov–Smirnov test) with the actual
distribution �3.4 times wider than the swaps. For verification, the inset shows a quantile-
quantile plot with points falling off the 45 degree line. B, Map strength (the SD of the autocor-
relation histogram as in A, but for every block separately) is calculated for each subject. The map
strength from day 1’s exploration is positively correlated with the fraction of objects correctly
localized on day 2 (r � 0.61, p � 0.027, Spearman), even though the subjects were naive to the
memory aspect of the task on day 1. Error bars indicate SEs across blocks. The shaded region is an
estimated 95% confidence interval.
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As the swaps of the eye movement data showed, punctate events
are capable of swamping the autocorrelation regardless of where
or when they occur because they are significant outliers that dom-
inate the correlation. Also, the map strength calculated from the
eye movements on day 1 did not predict the percentage correct on
day 2 (r � 0.18, p � 0.55, Spearman test; Fig. 8B). Thus, we
conclude that the eye movements did not produce the structure
in the spatial autocorrelations.

Autocorrelograms show � specificity and suggest
parietal localization
To examine the specificity of the autocorrelograms to the � band,
we recalculated the autocorrelograms for all subjects using the
same procedure, but using wavelets at varying frequencies. With
this larger number of points, the swapping procedure was im-
practical, so we estimated the baseline by replacing the wavelet of
each subject at each frequency with a corresponding sine wave at
the same frequency, as in Figure 5A2. This procedure gave a sim-
ilar estimate of the baseline-expected correlation at 6 Hz where

the bootstrap reference was available (�0.006 for sine vs �0.005
for bootstrap); however, it had a larger associated random error
because we combined the local error (from rebinning) for both the
sine and actual data, and those values were similar as expected. Fig-
ure 9 shows that there was a peak in the map strength above baseline
at 4 Hz and extending from 2 to 8 Hz (p � 0.05, Holm corrected for
family-wise error), consistent with high � and � activity.

We also tested whether the ICA components, which were es-
timated to arise in the parietal cortex (Fig. 3B,C), contributed to
the spatial autocorrelation. Like the map strength calculated from
the Pz signal, map strength from these ICA components on day 1
was correlated with the fraction correctly remembered on day 2
(r � 0.62 p � 0.042, Spearman test, Fig. 10). Thus, the ICA
analysis supported the spatial autocorrelation signal from Pz, its
apparent generation in parietal cortex, and its prediction of sub-
sequent memory for the environment.

Figure 8. Data from an electrode placed above the right eye. A, The autocorrelation value
was calculated for the actual subjects’ data (blue, dashed) and swaps of eye movements and
position across subjects (red, solid). There is no apparent change in the distribution of autocor-
relations ( p � 0.48, Kolmogorov–Smirnov test). Inset, A quantile-quantile plot with points
falling on the 45 degree line, again indicating no difference between the two distributions. B,
The percentage of correctly remembered responses on day 2 is uncorrelated with the map
strength (SD of the autocorrelations) and shows no significant relation (r � 0.18, p � 0.55,
Spearman). Error bars represent SEs across blocks. The shaded region represents an estimated
95% confidence interval.

Figure 9. Frequency localization. The map strength of the autocorrelograms was measured
with wavelets at frequencies from 1 to 20 Hz for all subjects and compared with a sine wave
baseline at the same frequency. Error bars combine SEs across all subjects and blocks with the
error estimated for the baseline and the signal itself. The peak activity over �2– 8 Hz is consis-
tent with � activity.

Figure 10. Parietal localization. The correlation of behavior with the map strength from the
ICs by subject is maintained (r � 0.62, p � 0.042, Spearman) as in the result from Pz alone (Fig.
6B). Inset, Topography of the parietal activity during walking (compare Fig. 3B). Error bars
represent SEs across blocks, and the shaded region represents an estimated 95% confidence
interval.
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Discussion
In the current study, we searched for cortical field potentials as-
sociated with spatial maps by recording EEG over the parietal
lobe while subjects freely walked about and interacted with a
simulated environment. � was consistent across separate travers-
als of a given separation, and the signal from both a midline
posterior parietal electrode and source activity estimated to me-
dial, posterior parietal cortex showed significant spatial autocor-
relation. Similar analyses performed on an EOG channel, used to
measure eye movements, showed no significant spatial autocor-
relations, ruling out eye movements as the source of the structure
seen in the autocorrelograms. Moreover, projecting the EEG
from one subject onto another subject’s path also destroyed the
spatial autocorrelation. The spatial maps were most strongly gen-
erated in the low frequency range (2– 8 Hz). Importantly, the
strength of the spatial maps during naive exploration signifi-
cantly correlated with future memory of the spatial configuration
of the objects. Subjects who had higher map strengths during
exploration subsequently were better able to recognize subtle
changes in the environment. � was also correlated with walking
speed, but this correlation did not explain the spatial displace-
ment autocorrelation or predict subsequent memory.

Spatial maps in rodents, primates, and humans
The spatial correlates of � described here in humans may be re-
lated to the spatial maps in rodents. Such maps represent space
using a manifold of rapidly interacting maps formed in the hip-
pocampus and associated temporal cortex, and extending into
parietal and frontal areas (Derdikman and Moser, 2010). In rats,
these internal maps are constructed using cells in the extended
hippocampus (Derdikman and Moser, 2010) that fire (1) at par-
ticular locations (“place cells”) (O’Keefe et al., 1998), (2) the
vertices of hexagonal grids that cover space (Hafting et al., 2005),
(3) the edges of the environment (Solstad et al., 2008), or (4) head
direction (Sargolini et al., 2006). Additionally, speed is a strong
determinant � power (McFarland et al., 1975) and frequency
(Sławińska and Kasicki, 1998) in the rat hippocampus, and that
speed-theta relationship has been observed in humans (Watrous
et al., 2011).

Of particular relevance to the current study, neurons in pos-
terior parietal cortex, a region that is strongly interconnected
with the hippocampus and allied areas, are tuned to the animal’s
location along a given spatial route (Nitz, 2006). In primates, the
parietal lobes subsume extensive spatial functions, including rep-
resentation of 3D space, spatial exploration, and navigation (An-
dersen et al., 1985; Todd and Marois, 2004; Save et al., 2005; Sato
et al., 2010). Moreover, hippocampal � oscillations have been
shown to entrain neurons in both prefrontal cortex and parietal
cortex in the rat (Sirota et al., 2008). Furthermore, parietal cortex
itself may be critical for establishing map-like representations
when these representations must be based on the spatial arrange-
ment of objects in an animal’s navigational space (Save et al.,
1992; Save and Poucet, 2000).

Although there have been few neural recordings in primates
exploring their environments, a recent study demonstrated that a
large proportion of neurons in the medial parietal region of mon-
keys are activated depending on their location in a simulated
environment (Sato et al., 2010). Place-responsive neurons have
also been recorded in the human hippocampus of epileptic pa-
tients performing simulated movements in virtual environments
(Ekstrom et al., 2003). Moreover, neurons with spatially periodic
firing fields (grid cells) have been recorded in monkey and hu-
man entorhinal cortex (Killian et al., 2012; Jacobs et al., 2013),

and in human medial parietal cortex (posterior cingulate) (Ja-
cobs et al., 2013). In addition, humans navigating a simulated
environment produced specific macroscopic fMRI signals in dif-
ferent areas of cortex, including entorhinal cortex and medial
parietal regions predicted from the coordinated activities of grid
cells in rats exploring a real world space (Doeller et al., 2010;
Kaplan et al., 2012). Indeed, both hippocampus and medial and
lateral posterior parietal cortices increased their activity during
simulated movement initiation when subjects began navigating
to locate objects, and � power, peaking at 5 Hz, also transiently
increased during this period (Kaplan et al., 2012).

EEG studies also have revealed parietal cortices to be impor-
tant nodes in brain networks associated with spatial navigation.
White et al. (2012) found medial temporal-parietal activity to
specifically be associated with navigational processes. Likewise,
using a virtual tunnel spatial orientation task, Gramann et al.
(2010) found that subjects who used an allocentric coding strat-
egy showed increased EEG activations in inferior and medial
parietal cortices (as well as in the occipital-temporal region).
Collectively, these studies suggest that in humans, as in other
mammals, spatial maps are rapidly constructed in the
hippocampal-parietal system upon encountering novel, com-
plex environments.

� oscillations and memory
We found that the spatial autocorrelation map strength was
greatest when calculated with wavelets ranging from 2 to 8 Hz,
having an absolute peak at 3– 4 Hz. Thus, �/� frequencies were
more tightly locked to spatial displacements than were higher
frequencies. This finding is consistent with the previously de-
scribed role of � in working memory processes (Sauseng et al.,
2010). � power during implicit learning predicts later retrieval
success (Klimesch et al., 1996), increases with increasing memory
load (e.g., Gevins et al., 1997; Jensen and Tesche, 2002), and may
subserve memory encoding and retrieval (Klimesch et al., 1996,
2001). Moreover, � oscillations in EEG are sensitive to spatial
navigation and to individual differences in spatial (Baker and
Holroyd, 2013) and navigational ability (White et al., 2012).

The autocorrelation maps reported here do not exhibit the
highly symmetric structure evident in spatial maps found in sin-
gle units of the entorhinal cortex of rats recorded during free
exploration (Hafting et al., 2005), and we are not proposing that
our scalp EEG findings represent such single-unit activity. In-
deed, scalp EEG reflects the activity of large numbers of cells and
is subject to spatiotemporal cancellation and smearing by the
CSF, skull, and scalp intervening between cortex and electrode.
Nonetheless, � phase modulates high � activity, which in turn is
correlated with cell firing (Canolty et al., 2006; Whittingstall and
Logothetis, 2009; Lachaux et al., 2012). The precise mechanism
underlying the findings reported in the present paper will need to
be uncovered through simultaneous recordings of surface EEG,
neural firing, and LFP.

Individual variation in spatial maps and memory
Construction of spatial maps has been hypothesized not only to
facilitate subsequent navigation in an environment but also to
help associate particular elements with particular places (Mc-
Naughton et al., 2006). As with hippocampal place cells, entorhi-
nal grid cell firing is in phase with the local � rhythm (Hafting et
al., 2008); and when � is disrupted by medial septum inactivation,
entorhinal grid cells are disrupted (Koenig et al., 2011) and mem-
ory is impaired (Winson, 1978). Moreover, phase-precession be-
tween spatial firing and local � provides a mechanism whereby
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the same circuit can be used for memory encoding and retrieval
(Burgess and O’Keefe, 2011). � has also been associated with
episodic recall in humans, but the mechanism of its involvement
remains obscure (Nyhus and Curran, 2010), and � power during
learning may predict future memory performance (Gevins and
Smith, 2000).

Consistent with these previous findings, we found that map
strength predicted subsequent memory, posing several questions
to be addressed in future investigations. One is examining the
influence of proximal cues (i.e., particular objects in consistent
locations) versus distal cues (i.e., the walls and general layout of
the room) in generating the structure in the autocorrelations.
Different subjects may have preferentially based their spatial en-
coding on proximal versus distal cues, and this might explain
some of the variation in the strength of their spatial maps. Further
experiments are needed to distinguish the relative importance of
these different encoding strategies in the generation of the struc-
ture in the spatial autocorrelations. Notwithstanding these re-
maining questions, the results described here constitute the first
evidence that correlations between � and spatial location exist in
humans and are related to the strength of memory encoding.
These results strongly suggest that the �-space relationships
embedded in the EEG reflect modifications to large cortical
ensembles that contribute importantly to higher-order cogni-
tive operations.
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