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Humans can rapidly recognize a multitude of objects despite dif-
ferences in their appearance. The neural mechanisms that endow
high-level sensory neurons with both selectivity to complex stimu-
lus features and “tolerance” or invariance to identity-preserving
transformations, such as spatial translation, remain poorly under-
stood. Previous studies have demonstrated that both tolerance and
selectivity to conjunctions of features are increased at successive
stages of the ventral visual stream that mediates visual recognition.
Within a given area, such as visual area V4 or the inferotemporal
cortex, tolerance has been found to be inversely related to the
sparseness of neural responses, which in turn was positively corre-
lated with conjunction selectivity. However, the direct relationship
between tolerance and conjunction selectivity has been difficult to
establish, with different studies reporting either an inverse or no
significant relationship. To resolve this, we measured V4 responses
to natural scenes, and using recently developed statistical techni-
ques, we estimated both the relevant stimulus features and the
range of translation invariance for each neuron. Focusing the anal-
ysis on tuning to curvature, a tractable example of conjunction se-
lectivity, we found that neurons that were tuned to more curved
contours had smaller ranges of position invariance and produced
sparser responses to natural stimuli. These trade-offs provide em-
pirical support for recent theories of how the visual system esti-
mates 3D shapes from shading and texture flows, as well as the
tiling hypothesis of the visual space for different curvature values.
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Although object recognition feels effortless, it is in fact a chal-
lenging computational problem (1). There are two important

properties that any system that mediates robust object recognition
must have. The first property is known as “invariance”: the ability
of the system to respond similarly to different views of the same
object. The second property is known as “selectivity.” Selectivity
requires that systems’ components, such as neurons within the
ventral visual stream, produce different responses to potentially
quite similar objects (such as different faces) even when presented
from similar viewpoints. It is straightforward to make detectors
that are invariant but not selective or selective but not in-
variant. The difficulty lies in how to make detectors that are both
selective and invariant.
To address this problem, both computer object recognition

algorithms (2) and neural systems use a series of hierarchical stim-
ulus representations, increasing both in complexity and the range of
invariance (1, 3). For example, in each successive area of visual
processing, neurons become selective for increasingly complex
stimulus features (4–9) and grow more tolerant to identity-pre-
serving transformations, such as image translation, scaling, and, to
some degree, rotation and the presence of “clutter” from other
objects in the scene (3, 10–12). This has led to the idea that high-level
sensory neurons are simultaneously selective for complex stimulus
features, such as the features of a face (13), and are invariant in that
they maintain their responses regardless of where within the visual
field the face might appear. However, a study of neural responses in
the ventral visual stream found that a high degree of selectivity is
inversely related to the degree of tolerance (1, 3, 10), although other
studies have found neurons that exhibit high tolerance and high

selectivity (see, e.g., ref. 14). Complicating matters, the relationship
between invariance and conjunction selectivity can depend on
a particular measure of activity that is used as proxy to quantify the
complexity of features that drive each neuron (1, 3, 10). This raises
the question as to what neural architectures can ultimately sustain
reliable object recognition, a question that is also currently at the
forefront of computer vision (15, 16).
To provide constraints helpful in addressing this question we

focused on the area V4, an intermediate area within the visual
object recognition pathway that collects signals from areas V1 and
V2 and provides input to the inferotemporal cortex. V4 neurons
have previously been shown to be selective to curvature (17–20).
This type of feature selectivity provides a simple and quantitatively
tractable framework to study conjunction selectivity. Recent sta-
tistical techniques make it possible to simultaneously estimate
both the types of features that drive each neuron and the range of
translation invariance from the neural responses to natural stimuli
(21). Here, we applied these techniques to V4 neuronal responses
to natural stimuli. The results revealed a number of trade-offs: We
findmany neurons with limited invariance and relatively few highly
invariant neurons in V4. Second, neurons selective for tighter
curvatures had smaller ranges of position invariance. These trade-
offs can help explain the wide range of sparseness values that have
been observed in V4 (1) and help resolve disagreements about the
existence of a relationship between invariance and conjunction
selectivity. Furthermore, these results support the processing of
visual shapes in terms of shading and texture flows.

Results
Our goal was to determine the stimulus features that drove
responses of each neuron and the degree of tolerance to changes
in the position of each neuron’s preferred features. We probed
each V4 neuron with a large number of frames from natural
movies (∼30,000 on average, a minimum of 6,000 and a maximum
85,000). Frames were presented in groups of ∼100 as part of ∼3.7-
s-long movies. From these responses to natural stimuli, we esti-
mated which of the stimulus features modulated the probability of
spiking (either positively or negatively) of a given neuron. We will
refer to these features as “relevant stimulus features.” We also
estimated each neuron’s invariance to translation from its
responses to natural scenes. Both invariance and relevant stimulus
features were determined using an extension of the traditional
linear–nonlinear (LN) model framework (22, 23). In its simplest
form, an LN model accounts for the neural response through
a nonlinear function of the similarity between the stimulus and the
neuron’s relevant stimulus feature, which also corresponds to the
receptive field of the neuron. Generalizations of this approach
allow for sensitivity in the neural response to multiple stimulus
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features (24–28). Here, we have further generalized the approach
to take into account the observation that V4 neurons exhibit some
degree of position invariance. We incorporated model parameters
to allow a variable degree of translation invariance. By allowing
these parameters to vary, we estimated the degree to which each
neuron exhibited these two forms of invariance. We refer to this
as a translation-invariant LN model, and to the corresponding
relevant stimulus features as the maximally informative invariant
dimensions (MIIDs) because these dimensions were those that,
when allowed to vary in position, capture the maximal amount
of information about the neural response. Fig. 1A illustrates
schematically one way translation-invariant conjunction se-
lectivity could be implemented (29–32). Most of the analyses
presented here will be focused on models with partial trans-
lation invariance taking into account interactions between two
MIIDs. We also compared these models to those with an un-
limited range of translation invariance (20) and find that models
with unlimited translation invariance (schematized in Fig. S1)
yielded the best description of the neural responses of a subset
of V4 neurons (see Fig. 4).
The relevant stimulus features are determined based on an

analysis of the number of spikes that was elicited by each movie
frame. The starting point for the analysis is the computation of the
spike-triggered average (33), followed by optimization to remove
correlations present in the natural stimuli (34). The size of the
considered visual area over which signals are pooled determines
the range of the position invariance and is an adjustable parameter
of the model. Fig. 1 B and C shows the pair of MIIDs for two
example neurons obtained using this approach. Here, the color
of each pixel indicates the light intensity (darker or lighter, rela-
tive to mean background luminance) that maximally modulated
the probability of spiking. The spatial profile of each MIID thus
corresponds to the pattern of light that, when allowed to translate,
maximally modulated the probability of spiking.

We find that many neurons, such as the example neuron in
Fig. 1B, were selective for curved contours. This is consistent
with previous reports of bimodal orientation tuning in the
Fourier domain observed in experiments with natural stimuli
(20) and with previous studies using synthetic stimuli (17). The
use of natural stimuli here allowed us to use the same stimulus
sequence to determine both the feature selectivity and invariance
properties of many different neurons.

Trade-Off Between Curvature Tuning and Position Invariance. Com-
paring neurons with different ranges of position invariance (mea-
sured relative to the spatial extent of MIIDs profiles), we found
that neurons with smaller ranges of position invariance were se-
lective for contour elements with tighter curvature. Examples
shown in Fig. 1 illustrate this trend. The neuron in Fig. 1B had
a smaller range of position invariance. The MIIDs indicate that
this neuron was selective for a curved contour. The neuron in Fig.
1C had a larger range of position invariance and its two MIIDs
indicated selectivity for an almost straight contour. To character-
ize curvature selectivity quantitatively and across the population,
we fitted the MIIDs for each neuron with a curved Gabor model,
as indicated by the overlaid contours plots. Fifty-seven neurons in
our population were successfully fit by a model with partial
translation invariance. Among these, the MIIDs of 38 neurons
(67%) could be well described by the curved Gabor model that we
used to estimate curvature tuning (Materials and Methods). Across
this subset of 38 neurons, preferred curvature and position in-
variance were significantly anticorrelated (Fig. 1D). Here, curva-
ture values and the range of position invariance were measured
relative to the size of the receptive field. In these relative units,
there was no dependence of invariance on eccentricity or clus-
tering of curvature values in retinotopic coordinates (Fig. S2).
Thus, the finding of smaller preferred curvature observed in
neurons with larger range of position invariance does not neces-
sarily imply that only neurons with small receptive field sizes are
selective for large curvature values.
We undertook several control analyses to rule out the possibility

that the observed decrease in preferred curvature with position
invariance was due either to the particular the way receptive fields
were estimated from neural responses to natural stimuli or how
they were fitted with the curved Gabor model. First, we created
model neurons in which we could independently control themodel
neuron’s curvature turning and invariance properties. When
identical analyses were applied to a set of model cells whose
curvature was independent of the range of translation invariance
(and should therefore exhibit no correlation between these
properties), our analysis found no correlation (Fig. S3). Finally,
there was no significant difference in themean firing rates between
neurons with different ranges of position invariance (Fig. S4A) and
the corresponding models accounted for a similar fraction of
variance/information in the neural responses regardless of the
optimal range of position invariance (Fig. S4 B and C). These
control analyses show that the observed trade-off between curva-
ture tuning and position invariance in V4 is not due to the
estimation procedure.
In thinking about possible mechanisms that might endow V4

neurons with different relative ranges of position invariance, one
can envision two scenarios. The first is that different V4 neurons
pool signals in a spatially similar way but have different thresholds
for spiking (Fig. 2A). For example, a V4 neuron that is selective for
a vertical orientation can pool signals originating in V1 simple cells
selective for that same vertical orientation but centered at differ-
ent positions in the visual space. Then, having a higher threshold
for spiking would make the V4 neuron respond to the presence of
the vertical edge in an image over a smaller range of spatial
positions than a V4 neuron with a lower threshold. This possibility
predicts that there should be (i) a negative correlation between the
threshold value and invariance and (ii) a positive correlation be-
tween threshold value and sparseness in the neural responses. To
test for these relationships, we computed for each neuron its
threshold value (Materials and Methods). The data showed that
whereas the negative correlation between thresholds and the
range invariance was present (Fig. 2C) there was no relationship

Spikes

A B
Feature 1

Feature 2
-3.7 3.7

-3.6 3.6

-3.4 3.4

-3.7 3.7

Neuron 1 Neuron 2
C

Feature 1

Feature 2

horiz. pos. horiz. pos.

ve
rt.

 p
os

.
ve

rt.
 p

os
.

ve
rt.

 p
os

.
ve

rt.
 p

os
.

horiz. pos. horiz. pos.

“OR”

“AND”

0.1 0.15
0

2

4

6

cu
rv

at
ur

e 
 in

de
x 

1

degree of invariance

D

0.05

Fig. 1. Estimating feature selectivity of V4 neurons with natural stimuli. (A)
Schematic representation of LN models used to characterize feature selec-
tivity and invariance of V4 neurons. Shown here is an LN model with two
relevant stimulus features that, in conjunction, can trigger the neural re-
sponse when positioned at a number of different locations within the visual
field. (B and C) Feature selectivity of example V4 neurons with smaller (B,
6%) and larger (C, 12%) ranges of position invariance, respectively. The
range of position is measured relative to the spatial field that is shown in B
and C encompassing the relevant stimulus features. Color maps indicate the
first (Upper) and second (Lower) most relevant stimulus features. The color
scale indicates values (either positive or negative) relative to the mean lu-
minance, divided by the average SD across different pixels obtained from
different jackknife estimates. The red scale bar is 1°. The overlaid contour
plots were obtained by fitting curved 2D Gabor functions to the relevant
stimulus features. Neurons m17b_1 (B) and j46a_1 (C). (D) Trade-off between
curvature and invariance in V4. The curvature index 1 here is the curvature
parameter ρ from the fitted curved Gabor models normalized such that the
stimulus frame size has a unit length of 1. We find that this curvature index
decreases with the range of position invariance for both the first MIID (gray
triangles) and the second MIID (open circles). The solid line shows the least-
square fit for all points (P = 0.005 linear correlation); the dashed line is the fit
just through points for the first MIID (P = 0.042, linear correlation).
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between threshold value and sparseness in the neural responses
(Fig. 2D). [Note that we observed the same lack of correlation with
threshold values when sparseness in the neural responses was
quantified using the mutual information contained in the firing
rate (Fig. S5A).] These findings therefore point to an alternative
mechanism for generating position invariance in V4, where neu-
rons with a smaller range of position invariance receive a set of
stronger signals from a more narrow range of spatial location
compared with the more distributed pooling in neurons with
broader ranges of position invariance (Fig. 2B). If the value of
threshold were proportionately scaled with the maximum strength
of the inputs, then one would still expect a negative relationship
between the threshold and invariance yet no correlation between
threshold and sparseness. Thus, it is the second scenario illustrated
in Fig. 2B that is consistent with all of the observations.
The sparseness in the neural response can be affected not only

by the value of threshold to spike but also by how often the rele-
vant stimulus feature appears in natural scenes. Previous studies
found a trade-off between sparseness and invariance in both
inferotemporal cortex (IT) (10) and V4 (1). We have also ob-
served similar phenomena in our dataset using two different
measures of sparseness (Fig. 2E and Fig. S5). The fact that tighter
curvatures are observed less frequently in the natural environment
(Fig. S6) together with the inverse relationship between curvature
and invariance (Fig. 1D) can help explain how sparseness can be
inversely related to invariance, even though it is not affected by
changes in threshold (Fig. 2D).
To gain further insights into curvature processing carried out by

V4 neurons, one can compare other parameters, such as orien-
tation, spatial frequency, and phase of the curvedGabormodel for
the two MIIDs of each neuron. For example, V1 complex cells

have subunits that have similar orientation and spatial frequency
but different spatial phases. This property suggested that V1
complex cells pool signals from simple cells tuned to the same
orientation and spatial frequency but different spatial phases (35).
Random variation in spatial phase, when pooled, could also con-
tribute to spatial invariance of complex cells. At the same time,
end-stopped cells in V1 could encode curvature by combining
inputs from simple cells with different preferred spatial frequen-
cies (36). We found a reminiscent pattern in V4. Although across
our population of V4 neurons there was a wide range of preferred
spatial frequencies and orientations, most commonly the values
were similar for the two MIIDs for each (Fig. 3 A and B). At the
same time, the relative spatial phase between MIID1 and MIID2
was large, which spanned the range from 0° to 90°, with themedian
on 53° (Fig. 3A, Inset). Thus, we find in V4 the types of pair se-
lectivity with respect to curved contours that generalized the
conjunction selectivity typical of V1 complex cells. At the same
time, there were some V4 neurons for which the two MIIDs had
similar spatial phase but significantly different preferred ori-
entations. The selectivity to conjunctions of curved features with
different preferred orientation could be a signature of selectivity
for a type of texture flow (37) where curvature and orientation vary
in a coordinated way with spatial position.

Predictive Power. We find that the derived LN models accounted
for a large percentage of the mutual information carried by in-
dependent spikes, ranging from 25% to 99.8% (Fig. 4A). Mutual
information is a measure that is proportional to the log likelihood
of the LN model (38). It should be noted that these percentages
relate to the amount of “explainable variance.” This is because
variation in the response that does not vary with the stimulus
(“noise”) carries zero information about the stimulus. Another
important point is that these values were computed using parts
of the dataset that were not used to either fit parameters of LN
models or find the optimal range of position invariance. Thus,
the information values are not affected by overfitting. Similar
results were obtained in terms of the percentage of explained
variance (P = 0.74, t test for comparison between information
and variance explained values). On average, 59% of the infor-
mation could be explained, which is equal to or greater than that
of the state-of-the-art LN models built to describe the V1 neural
responses (8, 20). We emphasize that models of V4 neurons were
obtained with the same stimulus set as was used in an earlier
V1 study (39) and were evaluated in both cases with the same
measure of mutual information, allowing for direct comparison
between areas. We believe that the improved predictive power of
the V4 model is due, in part, to the incorporation of translation
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Fig. 3. The two relevant features often form “quadrature” pairs. Across the
population, the two relevant stimulus features have on average the same
preferred orientation (A) and spatial frequency values (B). The correspond-
ing P values are 0.44 and 0.59 for linear correlation. Points represent dif-
ferent neurons and are colored by the difference between MIID1 and MIID2
of the same neuron in terms of spatial phase (A) and preferred orientation
(B). (Inset) Histogram of phase differences between MIID1 and MIID2 shows
a peak at ∼50°, reminiscent of selectivity to a quadrature pair of relevant
stimulus features typical of V1 complex cells.
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invariance. On average, this improved predictive power by 42%
(P = 0.0004, t test; comparison was made across 38 neurons whose
responses could be predicted above chance by models with or
without translation invariance).
We also examined the predictive power of models that in-

corporated perfect translation invariance and found that they did
not typically perform as well as models whose invariance was
allowed to vary. Models incorporating limited translation in-
variance (<15% of the stimulus frame size) proved to be superior
to those with perfect translation invariance (those where theMIID
was held constant across visual field). The mean gain in predictive
power was 38% between models of variable range of translation
invariance vs. models with unlimited range of translation (P =
0.0017, t test; comparison wasmade across 38 cells whose responses
could be predicted above chance by at least one of the models).
Thus, incorporation of variable-range translation invariance led to
substantial improvements in predictive power of models of V4
responses, relative to perfectly translation-invariant models.
How was the range of position invariance distributed across the

population of V4 neurons? The majority of V4 neurons were best
described by models with nonzero but limited translation in-
variance (57 out of 109 neurons; Fig. 4C). The next-largest group
was neurons that were best described by models with no trans-
lation invariance (36 out of 109 neurons). Finally, models with
unlimited position invariance were best for 16 out 109 neurons.
Neurons with smaller degrees of translation invariance were more
numerous than those with greater translation invariance (Fig. 4C).
This could potentially reflect the need to tile visual space: Fewer
neurons may be needed if they respond to their preferred feature
across a wider range of positions. Note that this would predict that
cells tuned to shallower curvatures would be less numerous than
cells tuned to tighter curvatures (relative to the receptive field
size). A direct verification of this prediction was not possible be-
cause the fitting procedure for estimating curvature becomes less
reliable with increasing curvature value relative to the receptive
field size. Therefore, although the distribution of preferred cur-
vature values across the population of V4 neurons shows the
preponderance of tuning to shallow curvatures (Fig. S7), one
should keep in mind that cells tuned to tighter curvatures are
disproportionately eliminated from this histogram and not take its
properties as an argument against the tiling hypothesis.

Discussion
The primary goal of this work was to study the relationship be-
tween the complexity of neural feature selectivity and its tolerance
to translation in the context of natural vision. After deriving rel-
evant stimulus features from the responses of neurons in area V4
to natural stimuli, we focused on the relationship between curva-
ture tuning and position invariance, properties that are amenable
to quantification and have been previously shown to be important

for image representation in V4 (8, 17, 18, 40). We found that in-
corporation of a degree of translation invariance into models of
V4 neurons substantially improved their ability to account for the
neuronal response. We found that most neurons exhibited at least
some degree of position invariance, but that only a small fraction
of V4 neurons were best described by models with unlimited in-
variance. Quantifying curvature selectivity, we found that MIIDs
could be well fit by curved contours in approximately two-thirds of
the neurons. Among neurons with some degree of translation in-
variance that could be assigned a curvature preference value,
neurons with larger position tolerance were tuned to contours of
smaller curvature (Fig. 1D).
This study was carried out using natural stimuli. The demon-

stration provided here that curved contours were the preferred
stimulus feature for many neurons thus extends previous reports
on the importance of curvature representation in V4 (17, 19, 41) to
the natural context. Our results also follow up on the pioneering
studies (20) that demonstrated bimodal orientation tuning con-
sistent with the selectivity to curvature. At the same time, the re-
ceptive fields that were observed in the present study often were
too complex to be described well by a (curved) Gabor model.
Future studies will have to examine how such receptive fields re-
late to other image characteristics that go beyond curvature (8).
An encouraging point is that, altogether, position-invariant mod-
els described here provided amatch toV4 responses similar to that
provided by position-specific models for V1 responses (39). These
findings suggest that the exploration of high-level sensory areas
using diverse natural stimuli and invariant models may be simpler
than previously thought (8).
The relationship between conjunction selectivity, invariance,

and sparseness has been the focus of several recent studies (1, 3,
10). In both V4 and IT, sparseness is inversely related to tolerance
and positively correlated with conjunction selectivity. However,
the direct relationship between conjunction selectivity and toler-
ance has been harder to establish: It was observed in some studies
(10), but not others (1). The differences were likely due to dif-
ferent measures used to characterize conjunction selectivity. For
example, when conjunction selectivity was measured according to
how fast the neural responses deteriorated with the degree of
perturbation of the preferred shape for a given neuron (a quantity
termed “morph tuning”), an inverse relationship was observed
between shape tuning and invariance (10). However, when con-
junction selectivity was assessed by comparing the range of the
neural responses elicited by natural or scrambled stimuli, no re-
lationship was observed between conjunction selectivity and in-
variance (1). The present results are consistent with the conclusion
that invariance is inversely related to conjunction tuning, in the
following sense.We characterized curvature tuning of V4 neurons.
Curvature tuning requires the conjunction of orientation-selective
responses, presumably originating from orientation-selective V1
neurons. Curvature tuning is, in this sense, analogous to selectivity
for conjunctions of the preferred curve’s constituent orientations.
Our finding of an inverse relationship between curvature tuning
and invariance is therefore consistent with the earlier studies,
which showed an inverse relationship between conjunction selec-
tivity and position invariance.
The finding of an inverse relationship between curvature pref-

erence and translation invariance is consistent with a recent theory
for the computation of 3D shapes from shading flows (42). One of
the aspects of that theory is that the shape perception may arise as
a result of integration of neural signals corresponding to different
elementary shading flows, each of which corresponds to a different
orientation and curvature of a possible patch of the 3D surface
(43). To avoid error accumulation in simulations, shading flows
with larger curvature have to be more limited in spatial extent
compared with shading flows with smaller curvature values. Be-
cause curved surfaces give rise, in their 2D projection, to curved
contours, this theoretical feature of the estimation of 3D shape
from shading is thus consistent with the observed trade-off be-
tween curvature tuning and position invariance.
The observation of a trade-off between curvature and invari-

ance has another important implication for image representations
within the visual stream. Specifically, it refines a hypothesis for

0 50 1000

2

4

6

8

10

0 1 20

1

2

information explained 
by best model (bits/spike)

in
fo

rm
at

io
n 

(b
its

/s
pi

ke
)

BA

% information explained

nu
m

be
r o

f c
el

ls

0

20

40

unlimited*0.15
degree of invariance

0.10

# of neurons
best-fit by models

 varying in
 translation
 invariance

C

0.05

nu
m

be
r o

f n
eu

ro
ns

Fig. 4. Predictive power of LN models with position invariance. (A) The
distribution of the percent of mutual information explained by LN models
with a variable range of position invariance. (B) A comparison of in-
formation explained by the best model to the overall (model-free) in-
formation contained in the firing rate. The solid line at 45° corresponds to
the case in which all of the information is explained. (C) The distribution of
optimal translation ranges across the population of V4 neurons suggests
that fewer neurons are needed to represent the visual space when they have
wider range of translation invariance.
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how shape tuning in V4 may be formed based on signals from
earlier visual areas. Recent physiological studies show that V4
receptive fields are obtained by pooling from a constant area of V1
surface (44). Our results further suggest that the degree to which
a given V4 neuron pools signals representing the same ori-
entations centered at different positions or from different ori-
entations within the same visual area will determine its level of
selectivity and invariance within a continuous spectrum of shape
representations. However, it is unlikely that the differences in V4
selectivity and invariance can be simply explained by differences
in the homogeneity of preferred orientation values within the part
of V1 that sends signals to a given V4 neuron, for the following
reasons. First, selectivity for curvature requires a coordinated
change in the preferred orientation and spatial position; such
a change would not arise simply by pooling from an area of V1 that
contains a pinwheel in its orientation map. Second, each V4
neuron was previously shown to pool signals from a large area of
V1 surface, where as much as one-sixth of V1 surface can con-
tribute inputs to a single V4 neuron (44). Indiscriminate sampling
from such a large area of V1 surface, containing many pinwheels,
is sure to destroy any complex feature selectivity without yielding
invariance. Finally, we found no evidence for clustering in curva-
ture preferences or a change with eccentricity for the preferred
values of curvature and invariance range, when both quantities
were measured in units of the receptive field size. Thus, although
V4 neurons pool from vast regions of V1 surface, this pooling has
to be highly coordinated to yield the trade-off between curvature
tuning and position invariance.

Materials and Methods
Experimental data were collected using procedures approved by the In-
stitutional Animal Care and Use Committee of Salk Institute for Biological
Studies and in accordance with National Institutes of Health guidelines.
Experimental and surgical procedures have been described previously (45).

Data Collection. Neural responses to segments of natural movies were
recorded in area V4 in two monkeys as they maintained fixation, for a juice
reward. Receptive fields were mainly in the right visual field near the fovea.
The neural responses were collected extracellularly with tungsten micro-
electrodes (45). The natural stimulus had a fixed size (14° × 14°) and was
placed at the center of the estimated receptive field for each neuron.

Stimuli and Experimental Design. Natural stimuli consisted of movie segments
with approximate duration of 3.7 s. These stimuli were presented at 120 Hz
with a frame update rate of 30 Hz within a receptive field of a neuron.
Neuronswere probedwith several hundred suchmovie segments (range from
52 to 765 movie segments, average 300, median 271). Three movie segments
were chosen to be repeated multiple times (“repeated data,” 30 times on
average for each of the chosen movie segments, up to 266 times across the
three repeated segments). These repeated movie segments were interleaved
with those that were presented once (“unrepeated data”). Stimuli and the
neural responses were binned at 66-ms resolution. The relevant stimulus
features were analyzed at the latency of one time bin before a spike, which
corresponds to the latency of visual signals to arrive in the area V4. In this
work, we focus on spatial representation of visual signals. Additional time
lags were not considered to allow for adequate sampling of receptive field
profiles. Typically, the number of recorded spikes should be greater than the
number of points in the grid over which receptive fields are estimated. In-
cluding additional time lags would have reduced the number of neurons in
which receptive fields could be reliably estimated.

The unrepeated dataset was used to fit the LN models of neural re-
sponses. The repeated data were split in two halves across the number of
presentations, the first of which was used to select the best LN model
(according to the type and range of invariance) for each neuron based on the
amount of information explained, and the second of which was used to
evaluate performance of this optimal model. In this way, the measurements
of predictive power are not influenced in any way by either the model se-
lection or itsfitting. For analyses that did not involve predictive power, such as
comparison between curvature tuning and translation invariance, all of the
repeated data were used to determine the range of position invariance.

Structure of Invariant Models for Characterizing V4 Responses. Each neuron’s
responses were fit to maximize the mutual information accounted for by LN

models that varied in the range of position invariance (21) and were thus
extensions (Fig. 1 and Fig. S1) of the classic LN model (22, 23) to the neural
responses. The standard LN model accounts for the neural response through
an arbitrary nonlinear function of stimulus projections on a set of a few rel-
evant features. We assume that translation invariance is achieved by pooling
across input neuron populations. To model this, we combined multiple LN
models, such that the final spiking output of the neuron under study repre-
sents a MAX operation on the output of intermediate position-specific LN
models that represent input neurons (similar procedure can be used for logical
OR). Fig. S1A illustrates the model in which a translation-invariant neuron is
sensitive to one relevant stimulus feature centered at a number of different
positions within the visual field. The set of input neurons over which signals
are pooled determines the range of the position invariance and is an adjust-
able parameter of themodel. We refer to this type of a model as a model with
partial translation invariance. Fig. 1A shows an extension of this model to the
case in which the responses of intermediate (position-specific) units are sen-
sitive to two relevant stimulus features.

In addition to models with partial translation invariance (which included
the case of zero translation invariance), we also considered models with
unlimited translation invariance. We implemented this by considering the
amplitudes of the 2D Fourier transform of stimuli (20). Because this stimulus
transformation discards the phase of the Fourier transformation, it becomes
automatically invariant to changes in stimulus position (as schematically il-
lustrated in Fig. S1B). However, the relative spatial arrangement corre-
sponding to different Fourier components is also lost. To allow for nonlinear
interactions between different Fourier components, we extended this model
to include, for each neuron, two MIIDs in the space of Fourier amplitudes
(Fig. S1C). In this way, the neuronal firing rate can be described by arbitrary
nonlinear function of projections between Fourier amplitudes onto the
MIIDs in that space. Procedures for estimating parameters of all of these
models and their predictive power are described in SI Text and Fig. S8.

Sparseness and Information Contained in Firing Rate. The overall information
carried by the arrival times of single spikes is a maximal amount of in-
formation that can be captured by any model of reduced dimensionality. This
quantity was computed using the average peristimulus time histogram (PSTH)

r(t) with respect to repeated stimuli (46): Ispike = 1
T

R  dt rðtÞ
r log2

h
rðtÞ
r

i
, where r is

the average stimulus evoked firing rate and time t uniquely identifies dif-
ferent stimuli within the segment of duration T that was repeated multiple
times. Sparseness of the neural firing rate was quantified as normalized

variance of the PSTH ðtÞ:SV = 1
T

R  dt rðtÞ2
r2

− 1: This quantity is monotonically

related to previous measures of sparseness (47) : S= SV=ðSV +1Þ, although it
is not limited to be between 0 and 1. Just as information Ispike provides an
upper bound for the amount of information that can be accounted for by
a model of reduced dimensionality, this measure of sparseness SV provides
an upper bound for the amount of variance that can be accounted for by
such models (48).

Threshold Estimation. To estimate a threshold value for each neuron, we
examined how its firing rate was modulated by the value of stimulus com-
ponent along MIID1 (evaluated at the most likely spatial position to have
elicited a spike within a given stimulus frame). The smallest value of stimulus
component along MIID1 where the firing rate was significantly different (P <
0.05) from the mean stimulus-evoked firing rate was taken as the estimate
of spiking threshold.

Inclusion Criteria. We recorded from 161 single units in two animals. When
evaluating predictive power of estimated models, we excluded those cells
where the overall information about visual stimuli carried by single spikes was
not significantly different from zero (P > 0.05) or less than 0.1 bits. We also
compared the values of the mutual information computed with and without
linear extrapolation to the infinite dataset size. Those cells where these two
values were significantly different (P < 0.05) were also excluded. The latter
criterion eliminates cells where the overall information value changed
strongly with a small expansion of the dataset, which suggests that the
dataset for that neuron was not large enough to ensure a reliable extrap-
olation to the infinite dataset size. The same criteria were applied to LN
models with different ranges of position invariance fitted to responses of
each neuron, that is, models that provided predictions that were not sig-
nificantly different from zero or strongly dependent on the size of the
dataset were excluded from subsequent analyses. The threshold for statis-
tical significance was modified according to Sidak correction to take into
account that multiple models with different ranges of position invariance
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were tested. LN models satisfying these criteria were obtained for 109
neurons out of 161 neurons. Measurements of the overall information car-
ried in the neural responses were available in 38 neurons (sufficient re-
peated data were not available for all 161 cells).

Curved Gabor Models. To quantify curvature selectivity, we fit the measured
profiles of relevant features using a curved Gabor model defined as

Acosððu− ρv2Þk+φÞ exp
h
−ðu− ρv2Þ2

2σ2 − v2
2μ2

i
. Here, parameter θ describes the ori-

entation of the contour, with variables u= x cos θ+ y sin θ and v = − x sin θ+
y cos θ describing the rotation from horizontal x and vertical y directions.
Other parameters stand for amplitude A, curvature ρ, spatial phase φ, spatial
frequency k, the width σ, and the length μ of the contour. When the
curvature parameter is set to zero this model reduces to the classic Gabor
model (49) that can produce localized bars and edges. The criteria for suc-
cessful fitting of curved Gabor models were that the correlation coefficient
between the measured and fitted profiles was >0.6. In addition, we required
parameters σ; μ< 20 (in units of frame size), and ρ< 25k. The later criteria are
designed to exclude unreasonably high estimates of receptive field sizes that
grossly exceed the frame size or of curvatures that cannot be resolved given
the “width” of the contour. The largest ratio of k=ρ observed among well-fit
receptive fields was ∼20. This corresponds to the circumference of the oscu-
lating circle 2π=ρ > 0.3 L, where L= 1=k is the wavelength of the oscillation
defined by the spatial frequency. Larger values of curvatures just appear as
a blob. Fitting of relevant stimulus features of model cells was always suc-
cessful according to these criteria, yielding correlation coefficients >0.8. In the
case of real data, out of 109 neurons this fitting was successful in 38 neurons

for either the first or the second relevant dimension and in 18 neurons for
both features. We note that it is more difficult to fit receptive fields with very
sharp curvatures. Although the fitting procedure itself is independent of the
degree of position invariance, because higher curvatures are associated with
smaller position invariance (Fig. 1D) the quality of a fit to cells’ receptive fields
with a curved Gabor model (as measured by correlation coefficient) de-
creased with position invariance (P = 0.01 for MIID1). The effect is most
pronounced for neurons with zero degree of position invariance. Here, we
could successfully fit both features in only 8% of position-specific neurons,
compared with ∼30% of neurons with partial position invariance within the
range of 5–15%. Many of the neurons with position-specific receptive fields
are likely to be corner detectors, but at present it was not clear how to
quantitatively characterize their receptive fields given uncertainties in the
receptive field estimation. Therefore, we limited the study of the trade-off
between curvature and invariance to cells with finite (nonzero) position in-
variance, because within this range of position invariance similar fractions of
cells’ receptive fields were well fitted with the curved Gabor model.
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