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The ability to make accurate predictions of future stimuli and

consequences of one’s actions are crucial for the survival and

appropriate decision-making. These predictions are constantly

being made at different levels of the nervous system. This is

evidenced by adaptation to stimulus parameters in sensory

coding, and in learning of an up-to-date model of the

environment at the behavioral level. This review will discuss

recent findings that actions of neurons and animals are

selected based on detailed stimulus history in such a way as to

maximize information for achieving the task at hand.

Information maximization dictates not only how sensory coding

should adapt to various statistical aspects of stimuli, but also

that reward function should adapt to match the predictive

information from past to future.
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Recently Stephen Hawking cautioned against efforts to

contact aliens [1], such as by beaming songs into space,

saying: ‘‘We only have to look at ourselves to see how

intelligent life might develop into something we wouldn’t

want to meet.’’ Although one might wonder why we

should ascribe the characteristics of human behavior to

aliens, it is plausible that the rules of behavior are not

arbitrary but might be general enough to not depend on

the underlying biological substrate. Specifically, recent

theories posit that the rules of behavior should follow the

same fundamental principle of acquiring information

about the state of environment in order to make the best

decisions based on partial data [2��,3]. Further, these

principles could also incorporate both the cost of obtain-

ing information and the cost of making complex decisions

[4��]. Therefore, validating such theories could help

establish frameworks to compare behavior not only in

different species and tasks, but also in single cells [5],

neurons, intracellular pathways, as well as emergent
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phenomena at the population level, such as the distri-

bution of blood flow in the brain that anticipates future

stimuli [6�] as well as resource allocation within compa-

nies and government [7].

In this article, we review recent evidence that behavior in

different systems can be described within a common

framework whereby actions are chosen to maximize the

Shannon mutual information with respect to a variable

that quantifies performance in the task at hand. This idea

has a venerable history when applied to individual

neurons. In this case the mutual information represents

how well the neural responses encode incoming stimuli,

reviewed in [2��]. The mutual information can be com-

puted as the difference between the entropy of the neural

response H(r) and the average entropy hH(rjstim)i of the

neural response observed when a given stimulus is

repeated multiple times, averaged over different stimuli:

I ¼ HðrÞ � hHðr jstimÞistim

Adaptive changes in neural representation can be viewed

as a predictive computation about the properties of

stimuli to be received in the near future. By properly

allocating the inherently limited neural responses

through mechanisms such as adjusting the neural gain

in single neurons [8,9] or the distribution of the preferred

stimulus values for different neurons [10–12], neurons can

more accurately encode future stimuli in order to provide

more information about them. Indeed, adaptation has

been shown to directly increase [13] and maintain [14]

information transmission.

The gain of single neuron responses can adapt to increas-

ingly subtle statistical properties, from the mean and

variance of incoming stimuli (review of the earlier work

is provided in [8,15]), to the detailed structure of sound

sequences that extend over minutes [16] or to a power

spectrum [17,18] and facial features in the visual system

[19,20]. Similarly, maximally informative encoding differs

strikingly depending upon higher-order stimulus stat-

istics [21]. For Gaussian inputs, the classic perceptron-

like solutions where the neural response depends only on

one stimulus dimension provide maximum information.

In contrast, in the case of Laplacian inputs, which

approximate many of the inputs derived from the natural

sensory environment [2��], the maximally informative

solution prescribes that responses of single neurons

should depend in specific and nonlinear ways on multiple

image components. The corresponding nonlinearities

were strikingly similar to those observed experimentally

in the primary visual cortex with respect to three cone
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isolating inputs [22�] as well as the relevant gray scale

features [23]. At the level of neural populations, theor-

etical studies have described how the neural responses

and their variability can be coordinated between neurons

in such a way as to maximize information transmission

[11,12,24,25]. For instance, either positive or negative

noise correlations can improve the separability the neural

responses to different classes of inputs, if the mean neural

responses are negatively or positive correlated across

different inputs [26]. These predictions were recently

confirmed in experiments addressing changes in neuronal

correlations through adaptation [27,28], learning [29] or

specific behavioral paradigms, such as parturition [30].

While the neural mechanisms underlying coordination

between neurons both in terms of their mean responses

and their variability remain to be fully elucidated, the

formation of synaptic connections is likely to play an

important role. To this end, dendrites of single neurons

in the developing cortex were shown to be capable of

complex adaptive computations to navigate in shallow

chemical gradients to ensure optimal connectivity [31,32].

In the retina, the resulting mosaics of receptive fields is

such that even irregularities in the light sensitive regions

of retinal ganglion cells carry substantial information

[10,33–35].

Yet, the pervasive nature of adaptation and optimality

observed at a variety of levels in the nervous system

should not be taken for granted. Some statistical

parameters, such as kurtosis, do not seem to trigger

adaptive changes in neuronal gain [36��,37]. They how-

ever can affect the time scale of adaptation to other

parameters of the stimulus distribution, such as variance

[36��]. Furthermore, the ability of neurons to adapt to

changes in the variance is not present in newborn neurons

and develops slowly over the course of several weeks [38].

This staggering of different adaptive capabilities during

development points to the computational cost associated

with adaptation itself. It seems possible to quantify this

cost in information-theoretic terms, perhaps similarly to

how complexity of decisions and rewards was quantified

[4��]. This would then make it possible to analyze the

trade-off between creating a more fully adapted neural

representation versus the gain in information trans-

mission that this representation might provide. Such a

framework may help explain when it is better to use

automatic forms of adaptation, such as those that are due

to built-in nonlinearities in the system [39,40] versus

more flexible forms of adaptation where the adaptation

time itself reflects the process of statistical inference

[36��]. Ultimately, this may provide an explanation for

adaptive properties in more natural stimulus ensembles

[41�,42�,43�].

It turns out that that information maximization can also

accurately describe changes in decision making observed

at the behavioral level. Our first example in this area
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pertains to navigation in a turbulent environment. We

know that tiny moths can find their mates over the

distances of several kilometers based on encountering

just a few pheromone molecules [44]. A computational

algorithm for successful navigation in a turbulent environ-

ment was recently found [45��] by choosing trajectories

that maximize the amount of information about the

source location, although individual steps do not always

bring the animal closer to the target. These ‘infotaxis’

trajectories reproduced characteristic properties of moth

flight, such as cross-wind zigzagging far from the source

and following the increasing odorant gradient close to the

source. Note that the distinguishing feature of infotaxis is

that, at low signal-to-noise conditions, its operation does

not rely on time averaged stimulus characteristics, such as

mean gradient. This property has its counterparts in

neural adaptation, where for example, at low light levels,

the gain of retinal ganglion cells can be affected by

absorption of single photons [46�], a point to which we

will return later.

From a physical perspective, where humans choose to

look is a very different type of behavior than moth

navigation, yet similar principles appear to be at work.

Recent work has explained many aspects of human eye

movements [47��], including looking in between two

likely locations (‘center-of-gravity saccades’ [48]) or look-

ing away from the target to eliminate less likely target

locations, with an optimization strategy termed ‘ideal

observer analysis’. It turns out that the ideal observer

analysis in this context can be mapped, in a one-to-one

fashion, onto the problem of maximizing the acquisition

of information about the target location. Thus, despite

different physical constraints and behavioral goals, both

the search with eye movements for a visual target and

moth navigation using pheromones can be understood as

information maximizing search strategies. It is note-

worthy that the statistics of our eye movements is also

under adaptive control to satisfy the needs of a trade-off

between speed and accuracy (such as in reading) [49].

Encouraged by this success of the infotaxis framework

[45,47��], we explored whether it could also account for

yet another very different type of animal behavior,

namely how a small nematode worm C. elegans decides

to stop searching a local area for food. Searching for food

over areas much larger in scale than the body size is a

problem that many different types of species have to

solve. A key feature of the infotaxis strategy is that

information is continuously gained from both the pre-

sence and absence of odorant detection events. The goal

is to maximize the function [45��]:

DSðrnewjrcurrentÞ ¼ �PðrcurrentÞScurrent þ ð1 � PÞ

� rcurrent

Xa

n¼0

pnðrnewÞDSnðrnewÞ;
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where P(r) describes the probability to find a source at

location r, the entropy of this distribution is denoted as

Scurrent, and the current position of the searcher as

rcurrent. The terms pn describe the expected probability

to observe n odorant hits if the searcher decides to

move to a location rnew, whereas terms DSn describe the

corresponding expected change in entropy following

these outcomes. By comparison, a chemotaxis search

would instead maximize the mean number of expected

odorant detection events:
Pa

n¼0 n pn. Another important

distinction between infotaxis with respect to chemo-

taxis lies in the computation of pn(rnew) In the infotaxis

model this probability is updated following each odor-

ant detection events and depends of the times where

these events have occurred, whereas for the chemotaxis

computation this probability only depends on the cur-

rent position. At high odorant concentrations, such as

those that often occur close to the source, infotaxis

converges to simple chemotaxis. The key difference

however is that infotaxis can work at the dilute limit,

whereas chemotaxis fails [45��].
Figure 1
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Qualitatively, it is known that when worms are transferred

from plates with food to plates without food the animals

perform an intense search of a local area [50] for a limited

time. Presumably, animals perceived the food to be

located nearby based on their prior experience and

previous search outcomes. This ‘local search’ lasts for

approximately 15 min. From a physical perspective, this

search problem is similar to the infotaxis navigation

considered above. However, an important difference is

that in this case there are no odorant cues. Therefore, one

might expect that all of the animal’s behavior must be

guided by the dynamics implied by its prior beliefs

summarized by P(rcurrent). Surprisingly, the infotaxis

solution in this context exhibits an abrupt transition

between a local search phase and a global search phase

(Figure 1a), provided we allow for the possibility that the

source is not located within the modeled area (the

full extent of the distribution in Figure 1a). The corre-

sponding probability p(t) = A evaluated at time t is

updated in a Bayesian manner for the next time step:

pt+1(A|0) = pt(0|A)pt(A)/pt(0). In the beginning of the
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search pt=0(A) = 1. The transition from local search to the

global search in the model occurs when pt(A) reaches zero.

This transition matches the worm behavior both quali-

tatively (Figure 1b) and quantitatively in terms of the

distribution of worm positions at the end of the local

search phase (Figure 1c). Importantly the same set of

parameters in the infotaxis model can also account for the

duration of the local search (Figure 1d). This match is

achieved without further adjustments in the model

because the temporal and spatial scales are related by

the known speed of worm movements on the plate

(0.2 mm/s), which remains unaltered during both the local

and global phases of the search [50]. A similar optimal

allocation of time on a given task to maximize information

was also described by a recent theoretical framework that

represented human attention as a decision to interrupt the

current task or persevere [51].

The infotaxis model makes a number of important

predictions that qualitatively differ from the simpler

chemotaxis model of navigation. A chemotaxis model is

based on the computation of a gradient. It predicts that

the animal’s behavioral response will be affected by the

magnitude of a drop in odorant concentration. In con-

trast, the infotaxis model makes predictions based

mainly on the relative distribution of food in space

rather than on its concentration. If the worms are

transferred from plates that have lawns of bacteria (food

for C. elegans) that have the same size and different

concentrations, then the chemotaxis (but not infotaxis)

model would predict a stronger initial response from the

animal when it is transferred from a more concentrated

lawn. Preliminary evidence in these experiments sup-

ports the more involved infotaxis model of behavior. A

related prediction is that the duration of the search may

depend on the size of the animal, because the trajectory

should remain the same in dimensionless units where

the width of the prior distribution is normalized by the

searcher size. Finally, the search duration is dependent

on the diffusion properties of the odorant and would

suggest that the search duration may depend on the

type of bacteria to which the worms were acclimated

before removal from food. Verifying these predictions

of the infotaxis model would set the precedent that

even animals with a relative simple nervous system (302

neurons, in the case of C. elegans) perform computations

based on a ‘mental map’ of likely food locations by

continuously updating probabilities across the range of

spatial locations around them.

Criticisms of information maximization as a behavioral

strategy do exist. For example, it has been argued that

these strategies do not always guarantee maximum fitness

[52]. It is noteworthy that the deviations in optimality

when using information maximization have been prim-

arily observed in a dynamic situation where the absolute

knowledge of the target position does not guarantee that
Current Opinion in Neurobiology 2014, 25:47–53 
this position could be reached before the target would

move again. In such cases, perhaps the paradox can be

resolved by considering maximizing information not only

about the current location of the target but also about its

future positions, that is predictive coding [53] and pre-

dictive information [4��,54]. Interestingly, this has

recently been discussed in the context of neuronal

responses. Recent analyses show that synergistic effects

across multiple neurons are much stronger when one

considers predictive information compared to information

about preceding stimuli that caused the neural responses

[2��], suggesting that the combinatorial power of neural

responses across a population is aimed at maximizing

information about future events and not the prior sensory

inputs. Furthermore, it is true that reward function that

guides the animal’s behavior might not correspond

directly to information gain, even when integrated to

infinite future times. However, to operate as well as

possible given the constraints on information acquisition,

theoretical arguments indicate that the animal must

adjust its internal reward structure to coincide precisely

with the predictive information from the past signals

about the future trajectories [4��]. This situation was

termed as the case ‘perfectly adapted environment’ in

[4��], but perhaps another way of describing this type of

adaptation would be to emphasize that it directs adap-

tation in the reward function of an agent to the statistics of

the environment. One would also expect that the two

adaptive processes: adaptation of the encoding function

to maximize the reward and adaptation of the reward

function itself might be achieved over different time

scales [4��]. On short time scales, the optimal behavioral

strategy is determined by the current reward structure.

However, over longer time scales the reward function

adapts to coincide with the available predictive infor-

mation present in stimuli. A recent review summarizes

the experimental evidence supporting this hypothesis

[55].

Applying the infotactic perspective to adaptive proper-

ties in neural systems, it is worth noting that most of the

studies of neural adaptation focused on adaptation to

time averaged statistical properties of the stimulus such

as mean, variance, covariance or perhaps even higher-

order moments. Yet sensory neurons also operate in

‘dilute’ conditions, that is at low signal-to-noise ratios.

For example, a recent study shows that the gain of

retinal ganglion cells can be affected by detection of a

single photon [46�]. It is worth noting that infotaxis is a

Bayesian approach based on times of individual (often

binary) detection events. Given the success of Bayesian

approaches in accounting for neural adaptation based

on time averaged stimulus properties, such as mean,

variance, and kurtosis [36��], the more nuanced

infotaxis approach might provide a new frontier for

understanding adaptive functions in the nervous

system.
www.sciencedirect.com
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Information theory approach to characterizing mood disorders. (a) Separate neural mechanisms for encoding rewards and punishments can be

explained using similar information-theoretic arguments that were used in sensory coding to explain the separation into OFF and ON channels. (b)

Following [56��], variations in positive and negative thresholds correspond to four basic mood states. The setting of these thresholds can be explained

by a Bayesian model based on prior outcomes of the animal–environment interactions [56��].
It would be exciting to see if information theory could

account for long term adaptive changes in behavior,

including mood particularly in the case of humans. There

is an emerging view that long lasting mental states, such

as depression, anxiety, optimism and pessimism,

represent a proper integrative response of an animal to

a sequence of events from its prior experiences [56��].
This is an advantageous response from an evolutionary

point of view for several reasons. First, many stimuli are

ambiguous and lead to reward or punishment with some

probability, forcing an animal to make a choice of whether

to allocate its effort to pursue a rewarding outcome or to

prepare to minimize the consequences of a negative

outcome. The threshold for triggering one or the other

action cannot be set in a static manner, because the

relative costs of false positives and negatives depend

on the physical state of the animal and on the state of

the environment. Therefore, to make an optimal

decision, from a Bayesian point of view [57], the animal

has to take into account the outcomes of previous de-

cisions made a recent past, which presumably were

characterized by similar states of the animal and its

environment. To map this onto mood, a depressed state

would then correspond mathematically to having a lower

threshold for predicting a negative outcome. It is remark-

able that thresholds for betting on positive versus nega-

tive outcomes can be changed by similar pharmacological

and behavioral modifications in both humans and labora-

tory rodents [56��]. Furthermore, neural mechanisms
www.sciencedirect.com 
underlying emotional states are conserved across a wide

variety of organisms, with important homologues be-

tween vertebrate and invertebrate species [56��]. In

particular, a prominent observation from animal learning

studies is that neural mechanisms of reward and punish-

ment are subserved by largely distinct circuits. The

analogy to ON-channel and OFF channel in vision might

be more than a mere coincidence. Instead, the separate

processing of rewards and punishments might reflect the

needs to achieve maximally informative coding under

metabolic constraints (Figure 2), following the same

arguments that were used in vision to explain the exist-

ence of separate ON and OFF pathways [58,59�,60–61]. It

seems likely that information theory could provide a

completely novel and quantitative way of characterizing

mood and its disorders.

Unlike in physics, where great successes began with

Newton’s realization that the physical laws are the same

whether on this planet or in space, in molecular biology,

which bloomed with the discovery of a universal genetic

code, we do not yet have a unifying framework to work

with at the systems and behavioral levels. Information

theoretic ideas have been successful at explaining proper-

ties of the nervous system from individual neurons to

populations of neurons, the building blocks of behavior

[2��]. Although the information maximization framework

has been tested so far on only in a handful of different

types of behavior, it seems well suited for providing such a
Current Opinion in Neurobiology 2014, 25:47–53
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unifying framework for understanding different facets of

behavior, from adaptation in sensory systems to the

adaptation of reward circuits on longer time scales so that

they can better guide learning.
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