
94 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

review articles
DOI:10.1145/2678280

Exploring the similarities and differences
between distributed computations in
biological and computational systems.

BY SAKET NAVLAKHA AND ZIV BAR-JOSEPH

BIOLOGICAL SYSTEMS, RANGING from the molecular to
the cellular to the organism level, are distributed
and in most cases operate without central control.
Such systems must solve information processing
problems that are often very similar to problems faced
by computational systems, including coordinated
decision making,29 leader election,2 routing and
navigation,52 and more.42

Over the last few years our ability to study and
model biological systems has improved dramatically.
Using advanced sequencing technologies we can
now determine the composition of the genomes of
hundreds of organisms. For specific cells and tissues

Distributed
Information
Processing
in Biological
and Computational
Systems

 key insights

 Biological and computational systems are
often required to solve similar distributed
information processing problems
including coordinated decision marking,
leader election, routing, and navigation.

 The emergence of new computing
technologies (wireless, sensor, and
mobile computing), coupled with
our ever-increasing ability to obtain
large quantitative datasets describing
biological systems at unprecedented
details, opens the door to new joint
studies of these two domains.

 Bidirectional studies in which researchers
use ideas from one domain to study the
other can concurrently lead to improved
biologically inspired algorithms and novel
computational understandings of how
biological systems function.

http://dx.doi.org/10.1145/2678280

JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 95

P
H

O
T

O
 B

Y
 D

E
J

E
N

 M
E

N
G

I
S

,
C

O
U

R
T

E
S

Y
 O

F
 U

S
G

S
 N

A
T

I
V

E
 B

E
E

 I
N

V
E

N
T

O
R

Y
 A

N
D

 M
O

N
I

T
O

R
I

N
G

 P
R

O
G

R
A

M we can query the set of active genes,
their expression levels, and how their re-
sponses change in different conditions
and over time. We can also determine
which molecules within cells interact
and how such interactions are wired
to form the control diagram regulating
cellular activity. Using this data we can
build models of information process-
ing within and between cells and an-
swer questions regarding the methods
biological systems use to achieve their
goals that were out of reach even a few
years ago. This data can also help us un-
derstand what computational problems
are being solved by biological systems
and how, which in turn can lead to spe-
cific algorithms that may also benefit
computational systems.

Theoretical distributed computing
has also been transformed by the recent
adaptation and pervasiveness of wire-
less and mobile computing devices.
These technologies have introduced
new computational problems not typi-
cally faced by traditional, wired-based
distributed systems.33 Even in cases
where algorithms initially designed for
wired networks can be employed, new
solutions are required to account for the
dynamic nature and new constraints
imposed by mobile devices (including
energy conservation,4 limited trans-
mission range,28 reliance on broadcast
communication,33 and many more).

These two converging technological
changes have led to several recent stud-
ies in which researchers use ideas from

one domain (either biology or comput-
er science) to study the other. Such bidi-
rectional studies can concurrently lead
to biologically inspired algorithms and
novel computational understandings
of how biological systems function,
which in turn can lead to new testable
hypotheses (for example, Tero et al.52
and Afek et al.2). Several recent reviews
have discussed these studies primarily
focusing on the type of computational
problem42 (networks-related, coordi-
nation, computer vision) or a specific
biological system and their modeling
(flocking birds, social insects).14,22

Our goal in this article is to focus
on the similarities and differences in
the constraints, goals, and algorithms
employed in both domains, especially

96 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

review articles

with limited resources and energy.4
Most distributed communication

models are based on message passing.
Even simple algorithms under such
models use messages whose size is
logarithmic in the number of partici-
pating nodes, which allows messages
to include a unique identifier for both
sender and receiver (for example, Lu-
by’s famous algorithm under PRAM,36
which can be adjusted to run under the
message passing model). While such
messages are very small compared to
most traffic requirements in commu-
nication networks (for example, movie
downloads), there are cases where
even logarithmic message size may be
problematic. For example, in crowded
wireless networks, interference may
cause larger messages to be dropped or
missed,51 whereas in sensor networks,
energy conservation also necessitates
smaller messages. Information pro-
cessing in biology is also often based
on message passing. Cells secrete pro-
teins to interact with other (neighbor-
ing or distant) cells in order to activate
various signaling networks. While the
number of proteins that can be secret-
ed, and their levels, can vary greatly,
there is recent evidence that most bio-
logical communication involves mes-

with regard to distributed information
processing. We hope this perspective
will allow researchers in both areas to
focus on the most promising problems
that can, and should, be studied bi-
directionally. We first discuss several
constraints that affect models of com-
munication between entities (mole-
cules, cells, mobile devices, and so on)
in the two domains (Figure 1). Next, we
argue that speed (or runtime), a key op-
timization goal for computational al-
gorithms, is typically less important for
biological systems, which focus more
on robustness and adaptability. Lastly,
we discuss similarities and differences
in algorithmic strategies employed by
both systems to achieve their goals un-
der these different constraints.

The key for successful studies at the
intersection of distributed computing
and biology is to identify problems in
which similar constraints and goals
may apply to both systems. Networks
provide one of many popular abstrac-
tions that have been immensely useful
in understanding large, distributed sys-
tems. In biology, networks depict how
molecules (metabolites, proteins), cells
(bacteria, neurons), or organisms (ants)
interact to jointly solve problems and
coordinate responses. In computer sci-

ence, they depict how processors, ma-
chines, and devices communicate and
process information. On the biologi-
cal side, systems that involve dynamic
networks and message passing (either
within and between cells or between
members of a population) are often
well suited for ‘distributed thinking.’
From the computational point of view,
mobile and sensor networks are ideal
candidates that can benefit from new
models and algorithms. In this article,
we take a broad perspective of networks
at all levels of life to demonstrate how
distributed perspectives may apply and
guide future investigations.

Communication Models
Most biological systems are distributed
and must make decisions and respond
to stimuli without a centralized coor-
dinator and under severe constraints
(energy conservation, limited commu-
nication range, limited messaging lan-
guage, among others). While computer
scientists have explored distributed
computing algorithms for decades, the
study of a class of severely limited com-
munication models is more recent and
has largely emerged to support mobile
and sensor networks that are often re-
quired to operate for long durations

Figure 1. Similarities and differences in the properties of computational and biological systems.

Top row: Models, goals, and algorithmic strategies often used by conventional distributed systems but
rarely in biological information processing. Bottom row: Shared features of dynamic distributed and
biological systems. These and other common aspects are the basis for studies that model information
processing in biology or develop a biologically motivated algorithm for a distributed computing problem.

?
?

?
?

?

?

1

2

Complex communication Speed Deterministic algorithms

Simple communication Robustness Randomized algorithms

Synchronous
O(log n) # of messages
O(log n) message size

Asynchronous
Small messages

O(log n) runtime
Fault tolerant
topology

Anonymous nodes
Stochastic

Unique node IDs
Turing machine

O(1) runtime
Efficiency and
Encryption

10100100101

“yes”

sync()

01-21-14 @ 03:30

0

0 0

1

1
1

1

1

4u7Ds

Noise

Attacks

3f04xHe

wait

lock()

“no”

If rand() > 0.6
 broadcast
Else
 stay silent

If x is True
 send to 1
Else
 send to 2

JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 97

review articles

sages whose effective information con-
tent is very small31 (on the order of one
bit). For example, Cheong et al.15 re-
cently demonstrated that cells cannot
distinguish between varying levels of a
certain protein input, leading to an ef-
fective binary message communicated
by secreting this protein.

In addition to using a limited com-
munication language (often of con-
stant size), another goal shared by the
two domains is reducing overall mes-
sage complexity. Such reduction leads
to more efficient use of available re-
sources and energy (in biology, metab-
olites and for computational systems,
electric power).

Motivated by these similar require-
ments, recent theoretical work in
distributed computing and systems
biology has analyzed the ability of ex-
tremely weak communication mod-
els to solve important computational
problems and to explain the activity of
key biological processes. In both cases
the focus is on limiting message size
and complexity, often at the expense
of runtime. Here, we provide a few ex-
amples of the communication mod-
els that have been proposed for such
systems and discuss both their use
for solving fundamental distributed
computing problems and their appli-
cation to study the activity of complex
biological processes.

Beeping: The beeping model17 (Fig-
ure 2a) assumes the only message
that can be sent or received is a beep

(a unary signal). The model assumes
an anonymous broadcast network in
which nodes have no knowledge about
the topology of the network or even an
upper bound on its size. In each time
slot a node can either beep or be si-
lent. At a particular time slot, beeping
nodes receive no feedback (they can-
not determine if other nodes beeped
as well), while silent nodes can only
differentiate between two states: none
of its neighbors beeping, or at least one
neighbor beeping. Such a model is also
appropriate for cellular signaling net-
works as discussed here.

Even with such limits on communi-
cation, several important distributed
problems can be solved. The first prob-
lem solved under the beeping model
was interval coloring, a variant of vertex
coloring.17 Given a set of resources, the
goal of interval coloring is to assign ev-
ery node a large contiguous fraction of
the resources, such that neighboring
nodes have disjoint resources. Using
beeping, the problem can be solved in
O(log n) time with high probability
compared to O (√log n) when using un-
restricted message sizes. More recently
beeping was used to solve an even hard-
er coordination problem: Maximal In-
dependent Set (MIS). MIS attempts to
find a subset of the nodes in the net-
work such that: (1) Every node is either
a MIS node or directly connected to one
and (2) no two nodes in the set are con-
nected to each other. MIS is a basic pro-
cedure in distributed computing and

serves as a building block for several al-
gorithms including routing and clus-
tering. Under mild additional assump-
tions (nodes can be woken up by
neighbors’ beeps), MIS can be solved in
the beeping model in O(log2 n) time, as
opposed to the classic O(log n) solution
when using larger message sizes (Lu-
by’s algorithm1) or as opposed to rely-
ing on knowledge of the topology (Me-
tivier’s algorithm39). The beeping
model leads to an optimal communica-
tion load minimizing overall system re-
quirements.2 Follow-up work also
showed that MIS could be solved under
the beeping model in logarithmic time
assuming sender collision detection.49

Sensory Organ Precursor (SOP) selec-
tion. To illustrate the usefulness of the
beeping model to study a biological
system consider the SOP selection pro-
cess, which is a key step in the develop-
ment of the fruit fly brain. The process
involves the selection of a subset of
cells that later become sensory bristles
on the fly’s forehead. Similar to the
MIS problem, such selection requires
that no two neighboring cells become
SOPs (known as lateral inhibition in bi-
ology) and that every cell is either a SOP
or connected to a SOP. Cells communi-
cate to determine which will become
a SOP and while several mathematical
models previously studied the two-way
signaling involved in lateral inhibition
(interactions between a SOP and one of
its neighbors), only recently have biolo-
gists looked at the bigger picture: How

Figure 2. Distributed communication models.

The beeping model assumes an anonymous broadcast network with synchronous communication and
allows only unary messages (beeps) to be sent. The stone-age model also assumes an anonymous
broadcast network, but allows asynchronous communication; it also allows a richer messaging language
than the beeping model but provides less computing power to each node. The population protocol
assumes random, asynchronous pairwise interactions between agents also with limited memory and
computational power.

(a) Beeping

Fixed network; synchronous,
unary messages

“beep”

“beep”
“beep”

“beep”

“beep”

(b) Stone-age

Fixed network; asynchronous messages;
trivial computation

(c) Population protocols

Dynamic network with one interaction
per node per time

11001

1001
10101

If Σ > 31, …
Else, …

1101

t = 1 t = 2

A A

B

B
C CF

F

E

E
D

D

0101

0001

98 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

review articles

sources, while also recruiting other
ants in the search and determining the
amount of food available in an environ-
ment. A recent study demonstrated
that with limited communication, ants
solve the foraging problem by imple-
menting a version of the Transmission
Control Protocol (TCP), which is used
on the Internet to determine available
bandwidth when routing packets.46 If
packet acknowledgments (ACKs) are
received quickly, the sender assumes
bandwidth is available and boosts
transmission; but if ACKs are returned
slowly, the sender assumes the network
is congested and throttles down trans-
mission. Similarly, the important fac-
tor for the ants is the rate of antennal
contacts (a binary indicator) between
ants currently in the nest and success-
ful ants (with food) returning to the
nest. If the rate of contact is high, it im-
plies food in the environment is plenti-
ful, and thus outgoing ants also leave
the nest at a faster rate.

Shared memory models. The previ-
ous models assume nodes communi-
cate by exchanging messages. Another
popular distributed communication
method is the use of shared memory.37
In such models, readers read from the
shared memory, writers write to the
shared memory, and erasers (which
may or may not be the writers), re-
move data from this shared memory.
Several papers have discussed the re-
lationships between message passing
and shared memory models. A classic
result in this area is that any message-
passing algorithm can also be solved in
the shared memory framework,7 and
vice versa, though runtime may drasti-
cally increase.

Chromatin computation. While most
communication in biology is through
message passing, in recent years
shared memory has also emerged as a
novel type of communication between
proteins inside cells. Specifically, pro-
teins were shown to modify DNA (by
leaving, erasing, or reading specific
marks on a set of proteins called his-
tones over which DNA is wrapped).
These marks play an important role
in regulating the expression and activ-
ity of genes. There are many proteins
(processors) that interact with these
histones, which can lead to down-
stream effects on expression levels of
genes next to marked sites. While the

a subset of cells is selected from the
overall population of cells. A variant of
the beeping model can be used to ex-
plain such behavior (where the beeps
in this case are a specific type of a pro-
tein called Delta).2 This insight, cou-
pled with new microscopy experiments
following SOP selection in developing
flies, led to the discovery of a novel sto-
chastic feedback process used to deter-
mine cell fate and to a new distributed
algorithm for MIS using the beeping
model as discussed earlier.

Stone-age distributed computing.
While beeping uses a very limited set of
messages, it assumes nodes can access
internal memory to perform computa-
tions that is logarithmic in the size of
the network (that is, nodes can count
up to O(log n)). Emek et al.20 proposed
a new communication model based
on a network of finite state machines
(nFSM) (Figure 2b). The nFSM model
assumes a richer set of messages com-
ing from a fixed-size language. These
messages are asynchronously deliv-
ered to a dedicated channel in the re-
ceiving node (similar to receptors on
interacting cells). However, unlike the
beeping model, in nFSM nodes can
only count up to a constant number.
In other words, when transitioning to a
new state, nodes evaluate the set of in-
coming messages (from all neighbors,
though these neighbors are anony-
mous) according to the one-two-many
principle: a node can only count up to
some predetermined number and all
values beyond this threshold are in-
distinguishable. As mentioned earlier,
such a model corresponds to recent bi-
ological findings regarding the limited
ability of cells to ‘count’ the levels of
incoming proteins.15 Using the nFSM
model, Emek et al. showed MIS can be
solved in O(log2 n) time and it can also
be used to 3-color an undirected tree in
O(log n) matching the optimal bound
for this problem.

Probabilistic inference by neurons.
One example of the potential usage of
the nFSM model comes from networks
of spiking neurons in the brain. Neuro-
scientists have experimentally shown
that neurons are often “unreliable,”
that is, there is significant trial-to-trial
variability in neural output under the
same input conditions.19 This suggests
neural populations encode informa-
tion by sampling from underlying

probability distributions. These distri-
butions represent internal models of
the external world that integrate new
sensory stimuli with prior knowledge
and memories. Recent computational
work has remarkably shown that net-
works of stochastically firing neurons
can carry forth probabilistic inference
in a manner similar to Markov chain
Monte Carlo sampling in distributed
systems,11 and such work has also led
to several experimentally testable pre-
dictions about the firing dynamics of
collections of neurons.45 Neurons also
use a one-two-many-like principle in
the sense they count inputs within a
time window up to a certain threshold
before firing, and firing thresholds can
vary depending on the type of neuron.
Experimental work has also shown
such internal representations are of-
ten sparse (only a few neurons are en-
gaged per stimulus), indicating such
energy-efficient representations may
also be applicable to information pro-
cessing problems in wireless sensor
networks.27

Population protocols. Unlike the
previous two models that rely on broad-
cast, population protocols are based on
direct, asynchronous physical interac-
tions between a pair of agents6 (Figure
2c). Such interaction models are very
common in nature and indeed, the de-
velopment of population protocols has
been motivated by a study of sensor
networks attached to a flock of birds
and was also recently applied to study
distributed sensor networks on ze-
bras.9 The model assumes that in each
time slot, interactions occur between
a pair of agents, which allows them to
directly exchange messages and update
their states. Unlike standard networks
though, these interactions are either
random or scheduled by an adversary,
subject to a fairness constraint, which
provide weak guarantees about the abil-
ity of every pair to interact eventually.
Several types of problems can be solved
distributively under this model includ-
ing OR computations, majority, sum-
mation, and under some additional as-
sumptions regarding the inputs, leader
election, and consensus.6

Ant foraging. While some ants com-
municate by leaving pheromone trails,
several harvester ant species only inter-
act by direct physical contact. However,
these ants are still able to find food

JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 99

review articles

The key for
successful studies
at the intersection
of distributed
computing
and biology is
to identify problems
in which similar
constraints and
goals may be
applied to
both systems.

large-scale study of such modifica-
tions is still in its infancy, issues that
have been addressed by distributed
algorithms—including competition,
ordering of shared memory access,
and the set of proteins that are able
to access a specific site (memory loca-
tion)—are of great current interest in
molecular biology.30 Recent studies
have proposed computational models
for such processes,10 and it is widely
believed that histone modification
and other epigenetic events play vital
roles in development.

In addition to the specific commu-
nication type (broadcast or physical),
message size (unary, fixed, or logarith-
mic) and buffer size, several other is-
sues can be studied in the context of
limited communication protocols for
both biology and computational sys-
tems. These include various collision
detection models, asynchronous vs.
synchronous (or weakly synchronous)
models,1 bounded synchrony models,44
and wakeup protocols.8 In all cases,
parallels between biological and com-
putational systems are leading to new
insights that benefit both fields.

Speed vs. Robustness
Algorithms using restricted commu-
nication models often require longer
runtimes compared to methods that
utilize larger messages. This is no co-
incidence. Biological algorithms often
need to trade off among speed, ac-
curacy, and robustness, especially in
noisy environments.16 Robustness can
be improved by using extremely weak
communication models that require
few assumptions, as mentioned here.
Here, we discuss another issue that af-
fects robustness: network topology.

In this context, robustness denotes
the ability of an algorithm to tolerate
faults. Many models have been pro-
posed in the distributed computing lit-
erature based on common types of fail-
ures, including link failures (where a
single edge in the network is lost), node
failures, and Byzantine failures (where
a node is compromised and can par-
ticipate in adversarial attacks). Many
algorithms have been proposed to
solve key distributed computing prob-
lems under each of these failure mod-
els, though they often assume fixed
topologies, such as rings or cliques.37
In biological systems, link and node

failures are also common; for example,
mutation or protein misfolding can
result in loss of specific interaction,57
and genetic mutations can also result
in a complete loss of a gene. Targeted
attacks on specific nodes are also com-
mon, for example, in host-pathogen in-
teractions, where virus proteins attack
host proteins in an attempt to infect
host cells.32 Overcoming these types
of failures is a key requirement for any
self-sustaining biological system.

While both computational and bio-
logical systems need to address these
similar types of failures, the methods
they use to do so differs. In distrib-
uted computing, failures have primar-
ily been handled by majority voting
methods,37 by using dedicated failure
detectors,25 or via cryptography.41 In
contrast, most biological systems rely
on various network topological fea-
tures to handle failures. Consider for
example the use of failure detectors.
In distributed computing, these are
either implemented in hardware or
in dedicated additional software. In
contrast, biology implements implicit
failure detector mechanisms by relying
on backup nodes24 or alternative path-
ways. Several proteins have paralogs,
that is, structurally similar proteins
that in most cases originated from the
same ancestral protein (roughly 40% of
yeast and human proteins have at least
one paralog26). In several cases, when
one protein fails or is altered, its para-
log can automatically take its place24 or
protect the cell against the mutation.26
Thus, by preserving backup functional-
ity in the protein interaction network,
cells can overcome node failures with-
out explicit use of failure detection
mechanisms. While node failures oc-
cur within cells, a much more common
scenario is the need to handle noisy,
unreliable, inputs. For example, fluc-
tuating environmental conditions can
make it difficult for a bacteria to decide
whether to sporulate or germinate.38
In molecular networks, environmen-
tal noise can make it difficult to deter-
mine what type of regulatory response
is needed and how quickly. Noise may
also spread through the network and
infect communication partners in a
similar manner to epidemiological
virus propagation models. To handle
such Byzantine-like failures biological
systems have optimized the topology

100 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

review articles

symmetry,2 to overcome noise, and
to ensure the survival of a popula-
tion under changing environmental
conditions.34 Given the similarities
mentioned earlier, it is not surpris-
ing that stochasticity has also long
been employed within distributed
algorithms for very similar purposes.
For example, for leader election it
was shown that if all processes are
initially identical it is impossible to
elect a leader without using random-
ized algorithms (in which case, it can
be solved only with high probability5).
Similarly, no deterministic algorithm
can solve consensus even if only one
node fails, while randomized algo-
rithms can handle such failures and
foil adversaries.37 Another widely used
strategy is feedback, both positive and
negative. The use of feedback requires
networks that contain several (often
quite short) loops. For example, feed-
back inhibition is an important mech-
anism used to control the amount
or concentration of a substance pro-
duced by a biochemical pathway to the
appropriate level regardless of its cur-
rent state or environmental availabil-
ity. Homeostatic plasticity is another
feedback mechanism that regulates
activity levels of neurons to a certain
range as a means to control circuit ac-
tivity and prevent runaway excitation
(seizures). Feedback is also central
to several computational routing and
initialization algorithms (using vari-
ous types of backward acknowledg-
ments). While useful, feedback can
also amplify errors and noise in the
system. This occurs in many message-
passing schemes when incorrect or
malicious information is distributed
and amplified through the network
over time. Biological systems can deal
with this by adjusting network topol-
ogy as mentioned earlier.

One common difference is in using
unique identifiers for nodes. As men-
tioned in the communication models
section, message sizes are usually one
bit or of constant size indicting that
unlike many traditional distributed
algorithms, biological processes do
not use such an identifier to label the
sender and receiver. While targeted
interactions do exist in biology (for ex-
ample, synapses between two neural
cells or domains mediating protein
interactions), a node receiving two

of the networks they utilize (Figure 3).43
For example, dense topologies with
clique-like structures are often used in
instances where little-to-no noise is ex-
pected, whereas sparser topologies are
preferred when networks are expected
to face more noise.40 Of course, spars-
er topologies are also less efficient (in
terms of routing distance, for example)
which means execution times will be
longer for such topologies. Weakly
linked modules, on the other hand,
can isolate occasional noise into nearly
independent modules that each per-
form efficiently.56

Along with robustness, biological
algorithms are also designed to be
adaptive and this is reflected in their
underlying network topology. For ex-
ample, activity-dependent plasticity of
synapses is a well-known phenomenon
by which neural networks are shaped
by environmental stimuli. These sig-
nals are processed in a streaming fash-
ion, and input patterns can change the
topology of the networks designed to
process them. Foraging slime molds
have also been shown to adaptively
adjust their networks of tubular junc-
tions based on the distribution and
availability of food sources in the area,
which is typically unknown a priori.52
Such adaptive behavior often comes at
the expense of runtime and resources.
Indeed, while most body organs are

well-formed in young babies (though
they still grow in size, their functional-
ity does not change), the human brain
overproduces synapses by 50%–60%
during development and only con-
verges to a more stable neural circuit
in late adolescence. Slime molds also
forage using breadth-first search us-
ing real cellular material, which is later
pruned when optimal paths are found.
In both cases, these systems sacrifice
speed and resources for robustness of
the resulting networks. These issues
(of dynamic network structure and par-
ticipation) are also key in the design
of mobile ad hoc networks33 and ideas
from the biological systems mentioned
here may prove useful for problems
that communication networks face.

Strategies Used By
Distributed Algorithms
We have described the operating con-
straints (communication models) and
the goals (speed and robustness) ap-
plicable to biological and computa-
tional systems. In this section, we fo-
cus on differences in the algorithmic
strategies used to achieve these goals
and how such strategies are utilized in
both domains.

One of the most widely used strat-
egy in biological systems is stochas-
tic decision-making. Randomness is
used by biological processes to break

Figure 3. The effect of topology on speed and robustness.

Cliques are highly efficient in terms of routing distance and can tolerate any single node failure,
but are quickly overcome by cascading failures or noise. Weakly connected networks are slightly
less efficient and cannot overcome targeted attacks on bottlenecks, but they typically can isolate
cascading failures to localized modules. Sparsely connected networks have longer routing time
but can better overcome both types of failures.

Speed

ü

ü ü

ü ü

üDensely connected
(cliques)

(bottlenecks)

Weakly-connected
modules

Sparsely connected

Robust
(single-point attack)

Robust
(cascading failure)

û

û

û

JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 101

review articles

messages usually cannot tell if these
messages came from the same node
or two different nodes.

Finally, while several distributed
computing algorithms use major-
ity voting37 to solve coordination prob-
lems, biological systems often employ
weighted voting schemes. This allows
some nodes to have a greater influence
on a population based on their own be-
lief. For example, in bacterial swarms,
a subgroup may find an undesirable
path when foraging and lead the entire
population astray. To overcome this, it
was found that bacterium can dynami-
cally adjust their decisions based on
their own confidence and messages re-
ceived from other cells.50 While many
of the rules used by these and other
weighted-voting systems are yet to be
worked out, they will likely be appli-
cable in similar computing scenarios,
for example, when programming dis-
tributed robot swarms for search-and-
rescue operations.

Discussion
A resurgence of interest in studying
how distributed biological systems
process information and solve com-
putational problems has occurred
during the last few years. This revival
has largely been triggered by two phe-
nomena: first, our ability to experi-
mentally probe the inner workings of
molecular and cellular systems using
a variety of new technological devices;
and second, the emergence of new
distributed computing models in-
spired by the pervasiveness of mobile,
wireless, and sensor devices. Togeth-
er, the new data and communication

models present a unique opportunity
to jointly model, analyze, and learn
from biological systems.

To effectively perform such bi-di-
rectional studies it is important that
researchers realize both the similari-
ties and differences between the mod-
els, goals, and algorithms used by the
two domains. Most distributed com-
puting models allow for large mes-
sages and high communication loads.
Algorithms to address problems un-
der such models often focus on speed
(rounds), assume fully connected net-
works, and in many cases are deter-
ministic, breaking symmetry by rely-
ing on unique identifiers. In contrast,
information processing in biological
systems uses much smaller messages
(binary or constant), often emphasiz-
es robustness over speed, uses incom-
plete (sometimes even sparse) net-
works, and is often stochastic. These
constraints, goals, and methods are
appropriate to some, but not all (or
even most) computational problems.
The accompanying table presents sev-
eral relevant problems that have been
addressed using insights from bio-
logical systems. In some cases, addi-
tional experiments were also required
to understand how the problems were
solved biologically and to derive algo-
rithms for the corresponding compu-
tational problems.

While we discussed some reoccur-
ring algorithmic strategies used within
both types of systems (for example, sto-
chasticity and feedback), there is much
more to learn in this regard. From
the distributed computing side, new
models are needed to address the dy-

namic aspects of communication (for
example, nodes joining and leaving
the network, and edges added and be-
ing subtracted), which are also relevant
in mobile computing scenarios. Fur-
ther, while the biological systems we
discussed all operate without a single
centralized controller, there is in fact
a continuum in the term “distributed.”
For example, hierarchical distributed
models, where higher layers “control”
lower layers with possible feedback,
represent a more structured type of
control system than traditional distrib-
uted systems without such a hierarchy.
Gene regulatory networks55 and neuro-
nal networks (layered columns) both
share such a hierarchical structure,
and this structure has been well-con-
served across many different species,
suggesting their importance to compu-
tation. Such models, however, have re-
ceived less attention in the distributed
computing literature.3 There are also
many abstractions used for analyzing
biological systems, ranging from dis-
crete mathematics and graph theory
to nonlinear dynamics and differential
equations,53 and such distributed com-
puting models can likely benefit both
modes of analysis.

Finally, as a cautionary note, bio-
logical algorithms designed by mil-
lions of years of natural selection do
not guarantee optimality47 and thus
should not be couched in unrealistic
terms. Indeed, some results discussed
in this review (for example, network
motifs,40 and gene backup relation-
ships24) are based on high-throughput
biological datasets that may be noisy
and sometimes even contradictory.12

Examples of biological systems and their computational analogs.

Biological System Computational Problem Communication Topology Stochastic? Alg.? Refs.

Slime mold Network routing Stone-Age Incomplete Yes Yes 35,48,52 48

Fly brain Max. independent set Beeping Sparse Yes Yes 1,2

Harvester ants TCP congestion control Population Random No Yes 46

Ants, swarms Distributed search Population Random Yes Yes 23,50

Plants Consensus Stone-age Incomplete No Yes 21

Fish schools Consensus Population Random Yes No 29

Cell cycle switch Approximate majority Population Random Yes Yes 13

Spiking neurons Probabilistic inference Stone-Age Incomplete No Yes 11,45

Dendritic branching Distributed MSTs Stone-Age Incomplete No Yes 18

Gannet colonies Space partitioning Population Random No Yes 54

Protein interactions Network design Population Random Yes Yes 43

102 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

review articles

(1985). ACM, New York, NY, 1–10.
37. Lynch, N.A. Distributed Algorithms. Morgan Kaufmann,

San Francisco, CA, 1996.
38. Mehta, P. and Schwab, D.J. Energetic costs of cellular

computation. In Proceedings of the Natl. Acad. Sci.
109, 44 (Oct. 2012), 17978–17982.

39. Métivier, Y., Robson, J., Saheb-Djahromi, N. and
Zemmari, A. An optimal bit complexity randomized
distributed mis algorithm. Distributed Computing 23,
5-6 (2011), 331–340.

40. Milo, R. et al. Network motifs: Simple building blocks
of complex networks. Science 298, 5594 (Oct. 2002),
824–827.

41. Mittal, P. and Borisov, N. Information leaks in
structured peer-to-peer anonymous communication
systems. In Proceedings of the Conf. on Computer and
Communications Security (2008), ACM, New York, NY,
267–278.

42. Navlakha, S. and Bar-Joseph, Z. Algorithms in
nature: The convergence of systems biology and
computational thinking. Mol. Syst. Biol. 7:546 (2011).

43. Navlakha, S., He, X., Faloutsos, C. and Bar-Joseph,
Z. Topological properties of robust biological and
computational networks. J R Soc Interface 11, 96 (2014).

44. Nusser-Stein, S. et al. Cell-cycle regulation of NOTCH
signaling during C. elegans vulval development. Mol.
Syst. Biol. 8:618 (2012).

45. Pecevski, D., Buesing, L. and Maass, W. Probabilistic
inference in general graphical models through
sampling in stochastic networks of spiking neurons.
PLoS Comput. Biol. 7, 12 (Dec. 2011), e1002294.

46. Prabhakar, B., Dektar, K.N., and Gordon, D.M. The
regulation of ant colony foraging activity without
spatial information. PLoS Comput. Biol. 8, 8 (2012),
e1002670.

47. Price, M.N. et al. Indirect and suboptimal control of
gene expression is widespread in bacteria. Mol. Syst.
Biol. 9:600, (2013).

48. Reid, C.R., Latty, T., Dussutour, A., and Beekman, M.
Slime mold uses an externalized spatial ”memory” to
navigate in complex environments. In Proceedings of
the Natl. Acad. Sci. 109, 43 (Oct. 2012), 17490–17494.

49. Scott, A., Jeavons, P., and Xu, L. Feedback from
nature: An optimal distributed algorithm for maximal
independent set selection. In Proceedings of the
2013 ACM Symposium on Principles of Distributed
Computing. ACM, New York, NY, 147–156.

50. Shklarsh, A., Ariel, G., Schneidman, E. and Ben-Jacob,
E. Smart swarms of bacteria-inspired agents with
performance adaptable interactions. PLoS Comput.
Biol. 7, 9 (Sept. 2011), e1002177.

51. Tang, J., Xue, G., Chandler, C., and Zhang, W.
Interference-aware routing in multihop wireless
networks using directional antennas. In Proceedings
of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (2005).
IEEE, 751–760.

52. Tero, A. et al. Rules for biologically inspired adaptive
network design. Science 327, 5964 (2010), 439–442.

53. Tyson, J.J., Chen, K.C., and Novak, B. Sniffers, buzzers,
toggles and blinkers: dynamics of regulatory and
signaling pathways in the cell. Curr. Opin. Cell Biol. 15,
2 (Apr. 2003), 221–231.

54. Wakefield, E.D. et al. Space partitioning without
territoriality in gannets. Science 341, 6141 (July 2013),
68–70.

55. Yu, H. and Gerstein, M. Genomic analysis of the
hierarchical structure of regulatory networks. In
Proceedings of the Natl. Acad. Sci. 103, 40 (Oct. 2006),
14724–14731.

56. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V. and Gerstein,
M. The importance of bottlenecks in protein networks:
Correlation with gene essentiality and expression
dynamics. PLoS Comput. Biol. 3, 4 (Apr. 2007), e59.

57. Zhong, Q. et al. Edgetic perturbation models of human
inherited disorders. Mol. Syst. Biol. 5, 321 (2009).

Saket Navlakha (navlakha@salk.edu) is an assistant
professor in the Center for Integrative Biology at the
Salk Institute for Biological Studies, La Jolla, CA. This
work occurred when he was a postdoc at Carnegie Mellon
University, Pittsburgh, PA.

Ziv Bar-Joseph (zivbj@cs.cmu.edu) is an associate
professor in the Machine Learning Department & Lane
Center for Computational Biology, School of Computer
Science, at Carnegie Mellon University, Pittsburgh, PA.

Copyright held by owners/authors. Publication rights
licensed to ACM. $15.00.

Thus, care should be taken by analyz-
ing multiple datasets to determine
whether generalizations hold. There is,
however, no doubt that evolution fine-
tunes biological processes to optimize
function. The emergent systems share
many properties with those coveted in
man-made distributed systems, and
they also make interesting trade-offs
between common optimization crite-
ria for example, between efficiency and
robustness, or runtime and message
complexity) that can be learned from,
especially to improve fault tolerance
and adaptability. On the biological
side, as technology continues to im-
prove and sheds light on molecular
and cellular decision-making, we be-
lieve computational perspectives will
be essential to understand how local,
distributed rules give rise to robust,
global systems.

Acknowledgments
This work was supported in part by the
National Institutes of Health award no.
F32-MH099784 to S.N.; and by grants
from the McDonnell Foundation pro-
gram on Studying Complex Systems
and from the U.S. National Science
Foundation award nos. DBI-0965316
and DBI-1356505 to Z.B.-J.

References
1. Afek, Y. et al. Beeping a maximal independent set.

Distributed Computing; Lecture Notes in Computer
Science. D. Peleg, Ed. (2011). Springer-Verlag, Berlin
Heidelberg, 32–50.

2. Afek, Y. et al. A biological solution to a fundamental
distributed computing problem. Science 331, 6014
(2011), 183–185.

3. Aida, K., Natsume, W. and Futakata, Y. Distributed
computing with hierarchical master-worker
paradigm for parallel branch and bound algorithm.
In Proceedings of the 31st International Symposium
on Cluster Computing and the Grid. IEEE Computer
Society, Washington, DC, 2003.

4. Anastasi, G., Conti, M., Di Francesco, M. and Passarella,
A. Energy conservation in wireless sensor networks: A
survey. Ad Hoc Netw. 7, 3 (May 2009), 537–568.

5. Angluin, D. Local and global properties in networks of
processors (extended abstract). In Proceedings of the
12th Annual ACM Symposium on Theory of Computing.
ACM, New York, NY, 1980, 82–93.

6. Aspnes, J. and Ruppert, E. An introduction to
population protocols. Middleware for Network
Eccentric and Mobile Applications. B. Garbinato, H.
Miranda, and L. Rodrigues, Eds. Springer-Verlag,
Berlin, Heidelberg, 2009, 97–120.

7. Attiya, H., Bar-Noy, A. and Dolev, D. Sharing memory
robustly in message-passing systems. JACM 42, 1
(Jan. 1995), 124–142.

8. Babaoglu, O., Binci, T., Jelasity, M. and Montresor, A.
Firefly-inspired heartbeat synchronization in overlay
networks. In Proceeding of the First International
Conference Self-Adaptive and Self-Organizing
Systems (2007), 77–86.

9. Beauquier, J., Blanchard, P., Burman, J. and Delaët, S.
Tight complexity analysis of population protocols with
cover times—the Zebranet example. Theor. Comput.
Sci. 512 (Nov. 2013), 15–27.

10. Bryant, B. Chromatin computation. PLoS ONE 7, 5
(2012), e35703.

11. Buesing, L., Bill, J., Nessler, B. and Maass, W. Neural

dynamics as sampling: A model for stochastic
computation in recurrent networks of spiking neurons.
PLoS Comput. Biol. 7, 11 (Nov. 2011), e1002211.

12. Bushman, F. et al. Host cell factors in HIV replication:
meta-analysis of genome-wide studies. PLoS Pathog.
5, 5 (May 2009), e1000437.

13. Cardelli, L. and Csikasz-Nagy, A. The cell cycle switch
computes approximate majority. Sci Rep. 2:656 (2012).

14. Chazelle, B. Natural algorithms and influence
systems. Commun. ACM 55, 12 (Dec. 2012), 101–110.

15. Cheong, R., Rhee, A., Wang, C.J., Nemenman, I. and
Levchenko, A. Information transduction capacity of
noisy biochemical signaling networks. Science 334,
6054 (Oct. 2011), 354–358.

16. Chittka, L., Skorupski, P., and Raine, N.E. Speed-
accuracy tradeoffs in animal decision-making. Trends
Ecol. Evol. 24, 7 (July 2009), 400–407.

17. Cornejo, A. and Kuhn, F. Deploying wireless networks
with beeps. In Proceedings of the 24th International
Conference on Distributed Computing (2010).
Springer-Verlag, Berlin, Heidelberg, 148–162.

18. Cuntz, H., Forstner, F., Borst, A. and Hausser, M. One
rule to grow them all: A general theory of neuronal
branching and its practical application. PLoS Comput.
Biol. 6, 8 (2010).

19. Destexhe, A. and Contreras, D. Neuronal computations
with stochastic network states. Science 314, 5796
(Oct. 2006), 85–90.

20. Emek, Y. and Wattenhofer, R. Stone age distributed
computing. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing
(2013). ACM, New York, NY, 137–146.

21. Falik, O., Mordoch, Y., Quansah, L., Fait, A. and
Novoplansky, A. Rumor has it ... : Relay communication
of stress cues in plants. PLoS ONE 6, 11 (2011), e23625.

22. Feinerman, O. and Korman, A. Theoretical distributed
computing meets biology: A review. Distributed
Computing and Internet Technology. C. Hota and P.
Srimani, Eds. Lecture Notes in Computer Science 7753
(2013), 1–18. Springer-Verlag, Berlin Heidelberg, 1–18.

23. Feinerman, O., Korman, A., Lotker, Z. and Sereni,
J-S. Collaborative search on the plane without
communication. In Proceedings of the ACM
Symposium on Principles of Distributed Computing
(2012). ACM, New York, NY, 77–86.

24. Gitter, A. et al. Backup in gene regulatory networks
explains differences between binding and knockout
results. Mol. Syst. Biol. 5, 276 (2009).

25. Gupta, I., Chandra, T.D., and Goldszmidt, G.S. On
scalable and efficient distributed failure detectors. In
Proceedings of the 20th Annual ACM Symposium on
Principles of Distributed Computing (2001). ACM, New
York, NY, 170–179.

26. Hsiao, T.L. and Vitkup, D. Role of duplicate genes in
robustness against deleterious human mutations.
PLoS Genet. 4, 3 (Mar. 2008), e1000014.

27. Hu, T., Genkin, A. and Chklovskii, D.B. A network of
spiking neurons for computing sparse representations
in an energy-efficient way. Neural Comput 24, 11 (Nov.
2012), 2852–2872.

28. Hu, Z. and Li, B. Fundamental performance limits
of wireless sensor networks. Ad Hoc and Sensor
Networks (2004), 81–101.

29. Ioannou, C.C., Guttal, V. and Couzin, I.D. Predatory
fish select for coordinated collective motion in virtual
prey. Science 337, 6099 (Sept. 2012), 1212–1215.

30. Jakovcevski, M. and Akbarian, S. Epigenetic
mechanisms in neurological disease. Nat. Med. 18, 8
(Aug. 2012), 1194–1204.

31. Jongeneel, C.V. et al. An atlas of human gene
expression from massively parallel signature
sequencing (MPSS). Genome Res 15, 7 (July 2005),
1007–1014.

32. Kitano, H. and Oda, K. Robustness trade-offs and host-
microbial symbiosis in the immune system. Mol. Syst.
Biol. 2:2006.0022 (2006).

33. Kuhn, F., Lynch, N., and Oshman, R. Distributed
computation in dynamic networks. In Proceedings
of the 42nd ACM Symposium on Theory of Computing
(2010). ACM, New York, NY, 513–522.

34. Levy, S., Kafri, M. Carmi, M. and Barkai, N. The
competitive advantage of a dual-transporter system.
Science 334, 6061 (Dec. 2011), 1408–1412.

35. Li, K., Thomas, K., Torres, C., Rossi, L. and Shen, C-C.
Slime mold inspired path formation protocol for
wireless sensor networks. In Proceedings of the 7th
International Conference on Swarm Intelligence
(2010). Springer-Verlag, Berlin, Heidelberg, 299–311.

36. Luby, M. A simple parallel algorithm for the maximal
independent set problem. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing

