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Exploring the similarities and differences 
between distributed computations in  
biological and computational systems.

BY SAKET NAVLAKHA AND ZIV BAR-JOSEPH

BIOLOGICAL SYSTEMS, RANGING from the molecular to 
the cellular to the organism level, are distributed 
and in most cases operate without central control. 
Such systems must solve information processing 
problems that are often very similar to problems faced 
by computational systems, including coordinated 
decision making,29 leader election,2 routing and 
navigation,52 and more.42

Over the last few years our ability to study and 
model biological systems has improved dramatically. 
Using advanced sequencing technologies we can 
now determine the composition of the genomes of 
hundreds of organisms. For specific cells and tissues 
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 key insights

    Biological and computational systems are 
often required to solve similar distributed 
information processing problems 
including coordinated decision marking, 
leader election, routing, and navigation.

    The emergence of new computing 
technologies (wireless, sensor, and 
mobile computing), coupled with 
our ever-increasing ability to obtain 
large quantitative datasets describing 
biological systems at unprecedented 
details, opens the door to new joint 
studies of these two domains.

    Bidirectional studies in which researchers 
use ideas from one domain to study the 
other can concurrently lead to improved 
biologically inspired algorithms and novel 
computational understandings of how 
biological systems function.

http://dx.doi.org/10.1145/2678280
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M we can query the set of active genes, 
their expression levels, and how their re-
sponses change in different conditions 
and over time. We can also determine 
which molecules within cells interact 
and how such interactions are wired 
to form the control diagram regulating 
cellular activity. Using this data we can 
build models of information process-
ing within and between cells and an-
swer questions regarding the methods 
biological systems use to achieve their 
goals that were out of reach even a few 
years ago. This data can also help us un-
derstand what computational problems 
are being solved by biological systems 
and how, which in turn can lead to spe-
cific algorithms that may also benefit 
computational systems.

Theoretical distributed computing 
has also been transformed by the recent 
adaptation and pervasiveness of wire-
less and mobile computing devices. 
These technologies have introduced 
new computational problems not typi-
cally faced by traditional, wired-based 
distributed systems.33 Even in cases 
where algorithms initially designed for 
wired networks can be employed, new 
solutions are required to account for the 
dynamic nature and new constraints 
imposed by mobile devices (including 
energy conservation,4 limited trans-
mission range,28 reliance on broadcast 
communication,33 and many more).

These two converging technological 
changes have led to several recent stud-
ies in which researchers use ideas from 

one domain (either biology or comput-
er science) to study the other. Such bidi-
rectional studies can concurrently lead 
to biologically inspired algorithms and 
novel computational understandings 
of how biological systems function, 
which in turn can lead to new testable 
hypotheses (for example, Tero et al.52 
and Afek et al.2). Several recent reviews 
have discussed these studies primarily 
focusing on the type of computational 
problem42 (networks-related, coordi-
nation, computer vision) or a specific 
biological system and their modeling 
(flocking birds, social insects).14,22 

Our goal in this article is to focus 
on the similarities and differences in 
the constraints, goals, and algorithms 
employed in both domains, especially 
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with limited resources and energy.4 
Most distributed communication 

models are based on message passing. 
Even simple algorithms under such 
models use messages whose size is 
logarithmic in the number of partici-
pating nodes, which allows messages 
to include a unique identifier for both 
sender and receiver (for example, Lu-
by’s famous algorithm under PRAM,36 
which can be adjusted to run under the 
message passing model). While such 
messages are very small compared to 
most traffic requirements in commu-
nication networks (for example, movie 
downloads), there are cases where 
even logarithmic message size may be 
problematic. For example, in crowded 
wireless networks, interference may 
cause larger messages to be dropped or 
missed,51 whereas in sensor networks, 
energy conservation also necessitates 
smaller messages. Information pro-
cessing in biology is also often based 
on message passing. Cells secrete pro-
teins to interact with other (neighbor-
ing or distant) cells in order to activate 
various signaling networks. While the 
number of proteins that can be secret-
ed, and their levels, can vary greatly, 
there is recent evidence that most bio-
logical communication involves mes-

with regard to distributed information 
processing. We hope this perspective 
will allow researchers in both areas to 
focus on the most promising problems 
that can, and should, be studied bi-
directionally. We first discuss several 
constraints that affect models of com-
munication between entities (mole-
cules, cells, mobile devices, and so on) 
in the two domains (Figure 1). Next, we 
argue that speed (or runtime), a key op-
timization goal for computational al-
gorithms, is typically less important for 
biological systems, which focus more 
on robustness and adaptability. Lastly, 
we discuss similarities and differences 
in algorithmic strategies employed by 
both systems to achieve their goals un-
der these different constraints.

The key for successful studies at the 
intersection of distributed computing 
and biology is to identify problems in 
which similar constraints and goals 
may apply to both systems. Networks 
provide one of many popular abstrac-
tions that have been immensely useful 
in understanding large, distributed sys-
tems. In biology, networks depict how 
molecules (metabolites, proteins), cells 
(bacteria, neurons), or organisms (ants) 
interact to jointly solve problems and 
coordinate responses. In computer sci-

ence, they depict how processors, ma-
chines, and devices communicate and 
process information. On the biologi-
cal side, systems that involve dynamic 
networks and message passing (either 
within and between cells or between 
members of a population) are often 
well suited for ‘distributed thinking.’ 
From the computational point of view, 
mobile and sensor networks are ideal 
candidates that can benefit from new 
models and algorithms. In this article, 
we take a broad perspective of networks 
at all levels of life to demonstrate how 
distributed perspectives may apply and 
guide future investigations.

Communication Models
Most biological systems are distributed 
and must make decisions and respond 
to stimuli without a centralized coor-
dinator and under severe constraints 
(energy conservation, limited commu-
nication range, limited messaging lan-
guage, among others). While computer 
scientists have explored distributed 
computing algorithms for decades, the 
study of a class of severely limited com-
munication models is more recent and 
has largely emerged to support mobile 
and sensor networks that are often re-
quired to operate for long durations 

Figure 1. Similarities and differences in the properties of computational and biological systems.

Top row: Models, goals, and algorithmic strategies often used by conventional distributed systems but 
rarely in biological information processing. Bottom row: Shared features of dynamic distributed and 
biological systems. These and other common aspects are the basis for studies that model information 
processing in biology or develop a biologically motivated algorithm for a distributed computing problem.
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sages whose effective information con-
tent is very small31 (on the order of one 
bit). For example, Cheong et al.15 re-
cently demonstrated that cells cannot 
distinguish between varying levels of a 
certain protein input, leading to an ef-
fective binary message communicated 
by secreting this protein.

In addition to using a limited com-
munication language (often of con-
stant size), another goal shared by the 
two domains is reducing overall mes-
sage complexity. Such reduction leads 
to more efficient use of available re-
sources and energy (in biology, metab-
olites and for computational systems, 
electric power).

Motivated by these similar require-
ments, recent theoretical work in 
distributed computing and systems 
biology has analyzed the ability of ex-
tremely weak communication mod-
els to solve important computational 
problems and to explain the activity of 
key biological processes. In both cases 
the focus is on limiting message size 
and complexity, often at the expense 
of runtime. Here, we provide a few ex-
amples of the communication mod-
els that have been proposed for such 
systems and discuss both their use 
for solving fundamental distributed 
computing problems and their appli-
cation to study the activity of complex 
biological processes.

Beeping: The beeping model17 (Fig-
ure 2a) assumes the only message 
that can be sent or received is a beep 

(a unary signal). The model assumes 
an anonymous broadcast network in 
which nodes have no knowledge about 
the topology of the network or even an 
upper bound on its size. In each time 
slot a node can either beep or be si-
lent. At a particular time slot, beeping 
nodes receive no feedback (they can-
not determine if other nodes beeped 
as well), while silent nodes can only 
differentiate between two states: none 
of its neighbors beeping, or at least one 
neighbor beeping. Such a model is also 
appropriate for cellular signaling net-
works as discussed here.

Even with such limits on communi-
cation, several important distributed 
problems can be solved. The first prob-
lem solved under the beeping model 
was interval coloring, a variant of vertex 
coloring.17 Given a set of resources, the 
goal of interval coloring is to assign ev-
ery node a large contiguous fraction of 
the resources, such that neighboring 
nodes have disjoint resources. Using 
beeping, the problem can be solved in 
O(log n) time with high probability 
compared to O (√log n) when using un-
restricted message sizes. More recently 
beeping was used to solve an even hard-
er coordination problem: Maximal In-
dependent Set (MIS). MIS attempts to 
find a subset of the nodes in the net-
work such that: (1) Every node is either 
a MIS node or directly connected to one 
and (2) no two nodes in the set are con-
nected to each other. MIS is a basic pro-
cedure in distributed computing and 

serves as a building block for several al-
gorithms including routing and clus-
tering. Under mild additional assump-
tions (nodes can be woken up by 
neighbors’ beeps), MIS can be solved in 
the beeping model in O(log2 n) time, as 
opposed to the classic O(log n) solution 
when using larger message sizes (Lu-
by’s algorithm1) or as opposed to rely-
ing on knowledge of the topology (Me-
tivier’s algorithm39). The beeping 
model leads to an optimal communica-
tion load minimizing overall system re-
quirements.2 Follow-up work also 
showed that MIS could be solved under 
the beeping model in logarithmic time 
assuming sender collision detection.49

Sensory Organ Precursor (SOP) selec-
tion. To illustrate the usefulness of the 
beeping model to study a biological 
system consider the SOP selection pro-
cess, which is a key step in the develop-
ment of the fruit fly brain. The process 
involves the selection of a subset of 
cells that later become sensory bristles 
on the fly’s forehead. Similar to the 
MIS problem, such selection requires 
that no two neighboring cells become 
SOPs (known as lateral inhibition in bi-
ology) and that every cell is either a SOP 
or connected to a SOP. Cells communi-
cate to determine which will become 
a SOP and while several mathematical 
models previously studied the two-way 
signaling involved in lateral inhibition 
(interactions between a SOP and one of 
its neighbors), only recently have biolo-
gists looked at the bigger picture: How 

Figure 2. Distributed communication models. 

The beeping model assumes an anonymous broadcast network with synchronous communication and 
allows only unary messages (beeps) to be sent. The stone-age model also assumes an anonymous 
broadcast network, but allows asynchronous communication; it also allows a richer messaging language 
than the beeping model but provides less computing power to each node. The population protocol 
assumes random, asynchronous pairwise interactions between agents also with limited memory and 
computational power.
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sources, while also recruiting other 
ants in the search and determining the 
amount of food available in an environ-
ment. A recent study demonstrated 
that with limited communication, ants 
solve the foraging problem by imple-
menting a version of the Transmission 
Control Protocol (TCP), which is used 
on the Internet to determine available 
bandwidth when routing packets.46 If 
packet acknowledgments (ACKs) are 
received quickly, the sender assumes 
bandwidth is available and boosts 
transmission; but if ACKs are returned 
slowly, the sender assumes the network 
is congested and throttles down trans-
mission. Similarly, the important fac-
tor for the ants is the rate of antennal 
contacts (a binary indicator) between 
ants currently in the nest and success-
ful ants (with food) returning to the 
nest. If the rate of contact is high, it im-
plies food in the environment is plenti-
ful, and thus outgoing ants also leave 
the nest at a faster rate.

Shared memory models. The previ-
ous models assume nodes communi-
cate by exchanging messages. Another 
popular distributed communication 
method is the use of shared memory.37 
In such models, readers read from the 
shared memory, writers write to the 
shared memory, and erasers (which 
may or may not be the writers), re-
move data from this shared memory. 
Several papers have discussed the re-
lationships between message passing 
and shared memory models. A classic 
result in this area is that any message-
passing algorithm can also be solved in 
the shared memory framework,7 and 
vice versa, though runtime may drasti-
cally increase.

Chromatin computation. While most 
communication in biology is through 
message passing, in recent years 
shared memory has also emerged as a 
novel type of communication between 
proteins inside cells. Specifically, pro-
teins were shown to modify DNA (by 
leaving, erasing, or reading specific 
marks on a set of proteins called his-
tones over which DNA is wrapped). 
These marks play an important role 
in regulating the expression and activ-
ity of genes. There are many proteins 
(processors) that interact with these 
histones, which can lead to down-
stream effects on expression levels of 
genes next to marked sites. While the 

a subset of cells is selected from the 
overall population of cells. A variant of 
the beeping model can be used to ex-
plain such behavior (where the beeps 
in this case are a specific type of a pro-
tein called Delta).2 This insight, cou-
pled with new microscopy experiments 
following SOP selection in developing 
flies, led to the discovery of a novel sto-
chastic feedback process used to deter-
mine cell fate and to a new distributed 
algorithm for MIS using the beeping 
model as discussed earlier.

Stone-age distributed computing. 
While beeping uses a very limited set of 
messages, it assumes nodes can access 
internal memory to perform computa-
tions that is logarithmic in the size of 
the network (that is, nodes can count 
up to O(log n)). Emek et al.20 proposed 
a new communication model based 
on a network of finite state machines 
(nFSM) (Figure 2b). The nFSM model 
assumes a richer set of messages com-
ing from a fixed-size language. These 
messages are asynchronously deliv-
ered to a dedicated channel in the re-
ceiving node (similar to receptors on 
interacting cells). However, unlike the 
beeping model, in nFSM nodes can 
only count up to a constant number. 
In other words, when transitioning to a 
new state, nodes evaluate the set of in-
coming messages (from all neighbors, 
though these neighbors are anony-
mous) according to the one-two-many 
principle: a node can only count up to 
some predetermined number and all 
values beyond this threshold are in-
distinguishable. As mentioned earlier, 
such a model corresponds to recent bi-
ological findings regarding the limited 
ability of cells to ‘count’ the levels of 
incoming proteins.15 Using the nFSM 
model, Emek et al. showed MIS can be 
solved in O(log2 n) time and it can also 
be used to 3-color an undirected tree in 
O(log n) matching the optimal bound 
for this problem.

Probabilistic inference by neurons. 
One example of the potential usage of 
the nFSM model comes from networks 
of spiking neurons in the brain. Neuro-
scientists have experimentally shown 
that neurons are often “unreliable,” 
that is, there is significant trial-to-trial 
variability in neural output under the 
same input conditions.19 This suggests 
neural populations encode informa-
tion by sampling from underlying 

probability distributions. These distri-
butions represent internal models of 
the external world that integrate new 
sensory stimuli with prior knowledge 
and memories. Recent computational 
work has remarkably shown that net-
works of stochastically firing neurons 
can carry forth probabilistic inference 
in a manner similar to Markov chain 
Monte Carlo sampling in distributed 
systems,11 and such work has also led 
to several experimentally testable pre-
dictions about the firing dynamics of 
collections of neurons.45 Neurons also 
use a one-two-many-like principle in 
the sense they count inputs within a 
time window up to a certain threshold 
before firing, and firing thresholds can 
vary depending on the type of neuron. 
Experimental work has also shown 
such internal representations are of-
ten sparse (only a few neurons are en-
gaged per stimulus), indicating such 
energy-efficient representations may 
also be applicable to information pro-
cessing problems in wireless sensor 
networks.27

Population protocols. Unlike the 
previous two models that rely on broad-
cast, population protocols are based on 
direct, asynchronous physical interac-
tions between a pair of agents6 (Figure 
2c). Such interaction models are very 
common in nature and indeed, the de-
velopment of population protocols has 
been motivated by a study of sensor 
networks attached to a flock of birds 
and was also recently applied to study 
distributed sensor networks on ze-
bras.9 The model assumes that in each 
time slot, interactions occur between 
a pair of agents, which allows them to 
directly exchange messages and update 
their states. Unlike standard networks 
though, these interactions are either 
random or scheduled by an adversary, 
subject to a fairness constraint, which 
provide weak guarantees about the abil-
ity of every pair to interact eventually. 
Several types of problems can be solved 
distributively under this model includ-
ing OR computations, majority, sum-
mation, and under some additional as-
sumptions regarding the inputs, leader 
election, and consensus.6

Ant foraging. While some ants com-
municate by leaving pheromone trails, 
several harvester ant species only inter-
act by direct physical contact. However, 
these ants are still able to find food 
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The key for 
successful studies 
at the intersection 
of distributed 
computing  
and biology is  
to identify problems 
in which similar 
constraints and 
goals may be 
applied to  
both systems. 

large-scale study of such modifica-
tions is still in its infancy, issues that 
have been addressed by distributed 
algorithms—including competition, 
ordering of shared memory access, 
and the set of proteins that are able 
to access a specific site (memory loca-
tion)—are of great current interest in 
molecular biology.30 Recent studies 
have proposed computational models 
for such processes,10 and it is widely 
believed that histone modification 
and other epigenetic events play vital 
roles in development.

In addition to the specific commu-
nication type (broadcast or physical), 
message size (unary, fixed, or logarith-
mic) and buffer size, several other is-
sues can be studied in the context of 
limited communication protocols for 
both biology and computational sys-
tems. These include various collision 
detection models, asynchronous vs. 
synchronous (or weakly synchronous) 
models,1 bounded synchrony models,44 
and wakeup protocols.8 In all cases, 
parallels between biological and com-
putational systems are leading to new 
insights that benefit both fields.

Speed vs. Robustness
Algorithms using restricted commu-
nication models often require longer 
runtimes compared to methods that 
utilize larger messages. This is no co-
incidence. Biological algorithms often 
need to trade off among speed, ac-
curacy, and robustness, especially in 
noisy environments.16 Robustness can 
be improved by using extremely weak 
communication models that require 
few assumptions, as mentioned here. 
Here, we discuss another issue that af-
fects robustness: network topology.

In this context, robustness denotes 
the ability of an algorithm to tolerate 
faults. Many models have been pro-
posed in the distributed computing lit-
erature based on common types of fail-
ures, including link failures (where a 
single edge in the network is lost), node 
failures, and Byzantine failures (where 
a node is compromised and can par-
ticipate in adversarial attacks). Many 
algorithms have been proposed to 
solve key distributed computing prob-
lems under each of these failure mod-
els, though they often assume fixed 
topologies, such as rings or cliques.37 
In biological systems, link and node 

failures are also common; for example, 
mutation or protein misfolding can 
result in loss of specific interaction,57 
and genetic mutations can also result 
in a complete loss of a gene. Targeted 
attacks on specific nodes are also com-
mon, for example, in host-pathogen in-
teractions, where virus proteins attack 
host proteins in an attempt to infect 
host cells.32 Overcoming these types 
of failures is a key requirement for any 
self-sustaining biological system.

While both computational and bio-
logical systems need to address these 
similar types of failures, the methods 
they use to do so differs. In distrib-
uted computing, failures have primar-
ily been handled by majority voting 
methods,37 by using dedicated failure 
detectors,25 or via cryptography.41 In 
contrast, most biological systems rely 
on various network topological fea-
tures to handle failures. Consider for 
example the use of failure detectors. 
In distributed computing, these are 
either implemented in hardware or 
in dedicated additional software. In 
contrast, biology implements implicit 
failure detector mechanisms by relying 
on backup nodes24 or alternative path-
ways. Several proteins have paralogs, 
that is, structurally similar proteins 
that in most cases originated from the 
same ancestral protein (roughly 40% of 
yeast and human proteins have at least 
one paralog26). In several cases, when 
one protein fails or is altered, its para-
log can automatically take its place24 or 
protect the cell against the mutation.26 
Thus, by preserving backup functional-
ity in the protein interaction network, 
cells can overcome node failures with-
out explicit use of failure detection 
mechanisms. While node failures oc-
cur within cells, a much more common 
scenario is the need to handle noisy, 
unreliable, inputs. For example, fluc-
tuating environmental conditions can 
make it difficult for a bacteria to decide 
whether to sporulate or germinate.38 
In molecular networks, environmen-
tal noise can make it difficult to deter-
mine what type of regulatory response 
is needed and how quickly. Noise may 
also spread through the network and 
infect communication partners in a 
similar manner to epidemiological 
virus propagation models. To handle 
such Byzantine-like failures biological 
systems have optimized the topology 
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symmetry,2 to overcome noise, and 
to ensure the survival of a popula-
tion under changing environmental 
conditions.34 Given the similarities 
mentioned earlier, it is not surpris-
ing that stochasticity has also long 
been employed within distributed 
algorithms for very similar purposes. 
For example, for leader election it 
was shown that if all processes are 
initially identical it is impossible to 
elect a leader without using random-
ized algorithms (in which case, it can 
be solved only with high probability5). 
Similarly, no deterministic algorithm 
can solve consensus even if only one 
node fails, while randomized algo-
rithms can handle such failures and 
foil adversaries.37 Another widely used 
strategy is feedback, both positive and 
negative. The use of feedback requires 
networks that contain several (often 
quite short) loops. For example, feed-
back inhibition is an important mech-
anism used to control the amount 
or concentration of a substance pro-
duced by a biochemical pathway to the 
appropriate level regardless of its cur-
rent state or environmental availabil-
ity. Homeostatic plasticity is another 
feedback mechanism that regulates 
activity levels of neurons to a certain 
range as a means to control circuit ac-
tivity and prevent runaway excitation 
(seizures). Feedback is also central 
to several computational routing and 
initialization algorithms (using vari-
ous types of backward acknowledg-
ments). While useful, feedback can 
also amplify errors and noise in the 
system. This occurs in many message-
passing schemes when incorrect or 
malicious information is distributed 
and amplified through the network 
over time. Biological systems can deal 
with this by adjusting network topol-
ogy as mentioned earlier.

One common difference is in using 
unique identifiers for nodes. As men-
tioned in the communication models 
section, message sizes are usually one 
bit or of constant size indicting that 
unlike many traditional distributed 
algorithms, biological processes do 
not use such an identifier to label the 
sender and receiver. While targeted 
interactions do exist in biology (for ex-
ample, synapses between two neural 
cells or domains mediating protein 
interactions), a node receiving two 

of the networks they utilize (Figure 3).43 
For example, dense topologies with 
clique-like structures are often used in 
instances where little-to-no noise is ex-
pected, whereas sparser topologies are 
preferred when networks are expected 
to face more noise.40 Of course, spars-
er topologies are also less efficient (in 
terms of routing distance, for example) 
which means execution times will be 
longer for such topologies. Weakly 
linked modules, on the other hand, 
can isolate occasional noise into nearly 
independent modules that each per-
form efficiently.56

Along with robustness, biological 
algorithms are also designed to be 
adaptive and this is reflected in their 
underlying network topology. For ex-
ample, activity-dependent plasticity of 
synapses is a well-known phenomenon 
by which neural networks are shaped 
by environmental stimuli. These sig-
nals are processed in a streaming fash-
ion, and input patterns can change the 
topology of the networks designed to 
process them. Foraging slime molds 
have also been shown to adaptively 
adjust their networks of tubular junc-
tions based on the distribution and 
availability of food sources in the area, 
which is typically unknown a priori.52 
Such adaptive behavior often comes at 
the expense of runtime and resources. 
Indeed, while most body organs are 

well-formed in young babies (though 
they still grow in size, their functional-
ity does not change), the human brain 
overproduces synapses by 50%–60% 
during development and only con-
verges to a more stable neural circuit 
in late adolescence. Slime molds also 
forage using breadth-first search us-
ing real cellular material, which is later 
pruned when optimal paths are found. 
In both cases, these systems sacrifice 
speed and resources for robustness of 
the resulting networks. These issues 
(of dynamic network structure and par-
ticipation) are also key in the design 
of mobile ad hoc networks33 and ideas 
from the biological systems mentioned 
here may prove useful for problems 
that communication networks face.

Strategies Used By  
Distributed Algorithms
We have described the operating con-
straints (communication models) and 
the goals (speed and robustness) ap-
plicable to biological and computa-
tional systems. In this section, we fo-
cus on differences in the algorithmic 
strategies used to achieve these goals 
and how such strategies are utilized in 
both domains.

One of the most widely used strat-
egy in biological systems is stochas-
tic decision-making. Randomness is 
used by biological processes to break 

Figure 3. The effect of topology on speed and robustness. 

Cliques are highly efficient in terms of routing distance and can tolerate any single node failure,  
but are quickly overcome by cascading failures or noise. Weakly connected networks are slightly  
less efficient and cannot overcome targeted attacks on bottlenecks, but they typically can isolate 
cascading failures to localized modules. Sparsely connected networks have longer routing time  
but can better overcome both types of failures.
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messages usually cannot tell if these 
messages came from the same node 
or two different nodes.

Finally, while several distributed 
computing algorithms use major-
ity voting37 to solve coordination prob-
lems, biological systems often employ 
weighted voting schemes. This allows 
some nodes to have a greater influence 
on a population based on their own be-
lief. For example, in bacterial swarms, 
a subgroup may find an undesirable 
path when foraging and lead the entire 
population astray. To overcome this, it 
was found that bacterium can dynami-
cally adjust their decisions based on 
their own confidence and messages re-
ceived from other cells.50 While many 
of the rules used by these and other 
weighted-voting systems are yet to be 
worked out, they will likely be appli-
cable in similar computing scenarios, 
for example, when programming dis-
tributed robot swarms for search-and-
rescue operations.

Discussion
A resurgence of interest in studying 
how distributed biological systems 
process information and solve com-
putational problems has occurred 
during the last few years. This revival 
has largely been triggered by two phe-
nomena: first, our ability to experi-
mentally probe the inner workings of 
molecular and cellular systems using 
a variety of new technological devices; 
and second, the emergence of new 
distributed computing models in-
spired by the pervasiveness of mobile, 
wireless, and sensor devices. Togeth-
er, the new data and communication 

models present a unique opportunity 
to jointly model, analyze, and learn 
from biological systems.

To effectively perform such bi-di-
rectional studies it is important that 
researchers realize both the similari-
ties and differences between the mod-
els, goals, and algorithms used by the 
two domains. Most distributed com-
puting models allow for large mes-
sages and high communication loads. 
Algorithms to address problems un-
der such models often focus on speed 
(rounds), assume fully connected net-
works, and in many cases are deter-
ministic, breaking symmetry by rely-
ing on unique identifiers. In contrast, 
information processing in biological 
systems uses much smaller messages 
(binary or constant), often emphasiz-
es robustness over speed, uses incom-
plete (sometimes even sparse) net-
works, and is often stochastic. These 
constraints, goals, and methods are 
appropriate to some, but not all (or 
even most) computational problems. 
The accompanying table presents sev-
eral relevant problems that have been 
addressed using insights from bio-
logical systems. In some cases, addi-
tional experiments were also required 
to understand how the problems were 
solved biologically and to derive algo-
rithms for the corresponding compu-
tational problems.

While we discussed some reoccur-
ring algorithmic strategies used within 
both types of systems (for example, sto-
chasticity and feedback), there is much 
more to learn in this regard. From 
the distributed computing side, new 
models are needed to address the dy-

namic aspects of communication (for 
example, nodes joining and leaving 
the network, and edges added and be-
ing subtracted), which are also relevant 
in mobile computing scenarios. Fur-
ther, while the biological systems we 
discussed all operate without a single 
centralized controller, there is in fact 
a continuum in the term “distributed.” 
For example, hierarchical distributed 
models, where higher layers “control” 
lower layers with possible feedback, 
represent a more structured type of 
control system than traditional distrib-
uted systems without such a hierarchy. 
Gene regulatory networks55 and neuro-
nal networks (layered columns) both 
share such a hierarchical structure, 
and this structure has been well-con-
served across many different species, 
suggesting their importance to compu-
tation. Such models, however, have re-
ceived less attention in the distributed 
computing literature.3 There are also 
many abstractions used for analyzing 
biological systems, ranging from dis-
crete mathematics and graph theory 
to nonlinear dynamics and differential 
equations,53 and such distributed com-
puting models can likely benefit both 
modes of analysis.

Finally, as a cautionary note, bio-
logical algorithms designed by mil-
lions of years of natural selection do 
not guarantee optimality47 and thus 
should not be couched in unrealistic 
terms. Indeed, some results discussed 
in this review (for example, network 
motifs,40 and gene backup relation-
ships24) are based on high-throughput 
biological datasets that may be noisy 
and sometimes even contradictory.12 

Examples of biological systems and their computational analogs.

Biological System Computational Problem Communication Topology Stochastic? Alg.? Refs.

Slime mold Network routing Stone-Age Incomplete Yes Yes 35,48,52 48

Fly brain Max. independent set Beeping Sparse Yes Yes 1,2

Harvester ants TCP congestion control Population Random No Yes 46

Ants, swarms Distributed search Population Random Yes Yes 23,50

Plants Consensus Stone-age Incomplete No Yes 21

Fish schools Consensus Population Random Yes No 29

Cell cycle switch Approximate majority Population Random Yes Yes 13

Spiking neurons Probabilistic inference Stone-Age Incomplete No Yes 11,45

Dendritic branching Distributed MSTs Stone-Age Incomplete No Yes 18

Gannet colonies Space partitioning Population Random No Yes 54

Protein interactions Network design Population Random Yes Yes 43
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Thus, care should be taken by analyz-
ing multiple datasets to determine 
whether generalizations hold. There is, 
however, no doubt that evolution fine-
tunes biological processes to optimize 
function. The emergent systems share 
many properties with those coveted in 
man-made distributed systems, and 
they also make interesting trade-offs 
between common optimization crite-
ria for example, between efficiency and 
robustness, or runtime and message 
complexity) that can be learned from, 
especially to improve fault tolerance 
and adaptability. On the biological 
side, as technology continues to im-
prove and sheds light on molecular 
and cellular decision-making, we be-
lieve computational perspectives will 
be essential to understand how local, 
distributed rules give rise to robust, 
global systems.
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