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Computation in the brain involves multiple types of neurons, yet
the organizing principles for how these neurons work together
remain unclear. Information theory has offered explanations for
how different types of neurons can maximize the transmitted
information by encoding different stimulus features. However,
recent experiments indicate that separate neuronal types exist
that encode the same filtered version of the stimulus, but then the
different cell types signal the presence of that stimulus feature
with different thresholds. Here we show that the emergence of
these neuronal types can be quantitatively described by the theory
of transitions between different phases of matter. The two key
parameters that control the separation of neurons into subclasses
are the mean and standard deviation (SD) of noise affecting
neural responses. The average noise across the neural population
plays the role of temperature in the classic theory of phase
transitions, whereas the SD is equivalent to pressure or magnetic
field, in the case of liquid–gas and magnetic transitions, respec-
tively. Our results account for properties of two recently discov-
ered types of salamander Off retinal ganglion cells, as well as the
absence of multiple types of On cells. We further show that,
across visual stimulus contrasts, retinal circuits continued to oper-
ate near the critical point whose quantitative characteristics
matched those expected near a liquid–gas critical point and de-
scribed by the nearest-neighbor Ising model in three dimensions.
By operating near a critical point, neural circuits can maximize in-
formation transmission in a given environment while retaining
the ability to quickly adapt to a new environment.
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Neural circuits use populations composed of multiple cell
types to perform complex computations. Theoretical argu-

ments, based upon the maximization of information transmitted
about incoming stimuli, have proved successful in accounting for
properties of single neurons (1–4) or populations of neurons
encoding either one (5–9) or several different visual features
(10–13). However, recent experiments in the retina have dis-
covered types of neurons whose responses are triggered by the
presence of the same visual feature in the stimulus but differ in
the threshold value by which they detect and report the presence
of that feature, where threshold is defined as 50% spiking
probability in a binary neuron (Fig. 1A) (14). These neurons may
be described by having the same linear properties (reflecting the
match in their relevant stimulus features) but different nonlinear
properties, such as different threshold values. Here we sought to
develop a framework to explain the existence of such neuronal
types as a function of the average noise across the neural pop-
ulation and differences in the noise between neural classes. We
use the retina as a tractable system to study how neural responses
in heterogeneous populations might be coordinated to efficiently
encode complex sensory inputs.
In the salamander retina, populations of two types of Off

cells encode nearly the same spatiotemporal visual feature, but
separately tile the retina, indicating that they are distinct cell
types (14). These two types of neurons also maintain different

thresholds across a range of contrasts, with differences in thresh-
old between populations exceeding the variation in threshold
within each type (Fig. S1). Specifically, fast Off sensitizing cells
maintain a lower threshold, encoding weaker signals, than fast
Off adapting cells, which encode stronger signals. Notably, all
types of Off cells split into such adapting and sensitizing sub-
types, whereas the On types do not. These specific differences in
the neural encoding between populations provide a particularly
convenient model in which to analyze the factors that cause
distinct neural populations to arise.
Here we show that the splitting of a population into two cell

types with different detection thresholds can be explained in
terms of maximization of information transmission and that the
decision to split or not is an abrupt transition point that depends
critically on the noise level. We further show that the process of
optimizing information transmission in neural populations facing
the decision to transition between one and two populations is
mathematically identical to optimization of free energy in phys-
ical systems undergoing transitions between different phases of
matter. Although the signatures that neural circuits might be
poised near a phase transition have been observed (15–19), the
correspondence to phase transitions in physical systems (16) and
the relevance to neuroscience have been debated (19). This
correspondence between neural and physical systems allows us to
infer that retinal populations adopt a specific position relative
to a critical point to increase information transmission in one
environment, yet still retain the ability to adjust quickly if the
environment changes.

Results
A Model for Quantifying Information Transmission in a Population of
Multiple Types of Neurons. In the retina, neurons of a given cell
type tile visual space. The full quantification and derivation of
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how and why interacting arrays of retinal neurons jointly encode
the visual world remains computationally challenging. However,
the information transmitted by multiple arrays of different types
of neurons is expected to be proportional to the amount of in-
formation transmitted about a small local segment of visual
space by neurons with receptive fields in that region (8, 10).
Thus, we simplify the problem here by focusing on sets of cells
located in a single region of space instead of having to account
for a full spatial array of cells and on those aspects of visual
stimuli that are encoded by a set of one fast Off adapting neuron
and one fast Off sensitizing neuron. Because these neurons en-
code the same type of visual feature, we can consider the
encoding of a one-dimensional signal, reflecting the visual
stimulus filtered by this feature, which is then converted into
spikes by a static nonlinear encoding function with a sigmoidal
shape (Fig. 1A). Our goal was to find such nonlinear encoding
functions that would maximize the accuracy with which this fil-
tered stimulus is represented in the responses of the two neurons.
We note that reducing two arrays of neurons to two representa-
tive neurons corresponds to the mean-field approximation in
physics, which has proved successful in describing some of the
most prominent aspects of emergent collective phenomena in
physical systems (20).
Because the response of a spiking neuron in a small time in-

terval can take only two values (zero or one spike), we modeled
responses for each neuron as binary. The neuron’s response to
a given filtered stimulus value is then described in terms of
a probability to observe a single spike rather than the number of
spikes produced. To describe this function, we used the logistic
function PðspikejxÞ= ½1+ exp½−ðx− μÞ=ν��−1 with two parame-
ters, the threshold μ, which is the value of the filtered stimulus x

that yields 50% spiking probability, and the slope ν that deter-
mines when spiking probabilities deviate from either zero or one.
With binary responses, the slope describes noise present in the

system (Fig. S1 D and E), because a shallow slope indicates that
for certain x values spikes are elicited only on some fraction of
trials. Note that this is true given the assumption that the cell is
described by a linear filter followed by a static nonlinearity (LN
model). Fractional spiking probabilities could also result from
a cell with deterministic nonlinear dynamics such as a refractory
period if it was fitted with an LN model that did not capture such
nonlinear dynamics. However, within the LN model frame-
work—a reasonable approximation to the firing rate of fast
Off cells (14)—fractional spiking probabilities as found in the
slope of the nonlinearity represent noise. The slope ν describes
the effect of noise of variance ν2=2 added to the filtered stimulus
x before it is passed through a deterministic thresholding func-
tion that equals 1 if x> μ and 0 if x< μ. The deterministic
thresholding function models the spike-generating nonlinearity,
whereas the additive noise represents the cumulative effect of noise
in the afferent circuitry; it may also include the component from
the noise in the spike generation itself, which, however, is typ-
ically small compared with afferent noise (21).

Accounting for Differences in Numbers of Off/On Cell Types. We
consider first the case where the two response functions have the
same slope. Here, the optimal coding strategy changed as a function
of the steepness of the slope, and two distinct behaviors emerged
(Fig. 1B). In the regime with shallow slopes corresponding to large
noise and ν, the maximally informative solution required that the two
neurons have identical thresholds, with the threshold difference,
m= μ2 − μ1, equal to zero. This regime corresponds to redundant
encoding, where maximal information occurs through combining
two noisy identical measurements on the signal, x. This indicates
that even redundant encoding (22) can be an optimal strategy for
populations of neurons. This solution stops being optimal when ν
decreases below a certain critical value νc, where the optimal
solution requires separate thresholds for the two neurons, and
nonzero values of m become optimal. This highlights the im-
portance of taking into account noise, something shown to be key
for optimal encoding with transcription factors (23), as well as in
cases where spikes are summed across time (24) or a neural
population (25). Thus, the maximally informative solution for
neural populations undergoes a sharp transition from one to two
populations when the noise decreases below a critical value.
This transition between two different encoding schemes offers

an explanation of a previously perplexing result. In salamanders
all Off populations are heterogeneous, splitting into adapting
and sensitizing populations. However, the On population is ho-
mogeneous, having a lower threshold (26) and displaying only
adaptation (14). A possible explanation for the relative homo-
geneity of the On population could be that the noise in the On
population is great enough that the optimal coding strategy
would be redundant encoding. That predicts that the On re-
sponse functions should have a shallower slope (larger ν) than
the fast Off cells. We found this to be the case (Fig. 1 C and D).
Not only do On cells have shallower slopes than Off cells as
previously reported (27), but also their average slope lies above
the critical point, placing them within the regime where re-
dundant encoding is the optimal solution. Importantly, this
match was obtained without any adjustable parameters, because
the average firing rate extracted from experimental values uniquely
determines the critical point. The error bars for the critical point
value in Fig. 1D reflect the variation of the critical point values
due to the different spiking rates recorded between pairs of
neurons. The information maximization framework thus explains
both the relative homogeneity of On cells, which do not split into
separate classes, and the presence of two classes of Off neurons.

Optimal Threshold Differences Between Fast Off Populations. We
then examined the information maximization framework by con-
sidering the case where the two response functions have unequal
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Fig. 1. Bifurcation between maximally informative solutions accounts for
differences in homogeneity of On and Off ganglion cell populations.
(A) Encoding model for neural responses. White noise stimuli (Left) are fil-
tered by a convolution with a temporal filter (Center) that describes the time
course of the preferred stimulus feature of a given neuron. These profiles
are similar for sensitizing (blue) and adapting (red) cells and we neglect
differences between them. (Right) The filtered stimulus is then passed
through a static nonlinear function that maps the filtered stimulus onto
a spiking probability that ranges between zero and one. The threshold μ is
the value of the filtered stimulus x that yields 50% spiking probability, and
the slope ν reflects noise that results in fractional spiking probabilities.
(B) Information as a function of the threshold difference of the two response
functions with the same slope (denoted by color). The rate constraint, hri,
was the same for all curves shown. Black line shows the location of the
maximal information for a given slope value. Bifurcation indicates the
transition in the optimal solution from one to two populations. (C) On cells
have shallower slopes than fast Off cells. Example nonlinearities for a fast
Off sensitizing, a fast Off adapting, and an On cell are recorded simulta-
neously. Input values are normalized such that their SD is equal to 1.
(D) Average slopes for fast Off sensitizing (n = 95), fast Off adapting (n =
388), and On (n = 58) cells. The critical point νc depends on the average rate
hri and is shown for the range of rates found in the data. For each hri, νc was
determined by fitting a power law to the dependence of optimal threshold
difference m on noise ν − νc, from B (Figs. S3C and S4A).
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slopes. Fig. 2A shows that in optimal solutions positive differences
between the two thresholds accompany positive differences
between the corresponding slope values. That is, for the optimal
solution the neuron with the higher threshold also has a response
function with a shallower slope. This prediction was confirmed by
experimental data (Fig. 2B), where across the full range of con-
trasts, sensitizing cells maintained steeper slopes than adapting
cells. Because sensitizing cells also have lower thresholds (Fig.
S1C), this coincides with the model prediction shown in Fig. 2A.
Up until this point we have used this theoretical framework to

understand general features of the retinal data; however, it also
has the capacity to determine the optimal threshold difference
for individual pairs of fast Off ganglion cells. The corresponding
analysis for an example pair of adapting and sensitizing cells is
shown in Fig. 2C. Here, we fixed the slopes of the two response
functions in the model to the measured values for this cell pair;
we also fixed the average threshold across the two neurons to
match the spike rate constraint determined from their measured
response functions. The mutual information was then plotted as
a function of the remaining parameter—the difference in thresh-
olds between the two response functions. The measured thresh-
old difference (black solid circles) was very close to the threshold
difference that maximized the information about the input, for all
contrasts. On average, fast Off cells had a threshold difference
that provided >97% of the maximal amount of information
across a large range of contrast distributions (Fig. 2D). Thus,
these populations of neurons maintained the optimal position of
their response functions even when the average spiking probability
for the adapting and sensitizing cells increased with increasing
contrast (Fig. S1).

Phase Transitions Within Maximally Informative Solutions. The be-
havior depicted in Fig. 1B, where the optimization function—
here maximizing information—transforms from having a single
optimal state to having two divergent optima, is one of the sig-
natures of second-order phase transitions between different
states of matter in physics (20). Systems near a phase transition
exhibit a number of instabilities that are thought to increase the
sensitivity of neural encoding to stimuli (17, 20, 28, 29). Char-
acteristics of these instabilities depend upon the type of phase
transition (20). To rigorously establish whether the transition
that we find in our model corresponds to one of the known classes
of phase transitions in physics we had to find the appropriate

correspondences between the key parameters that govern phase
transitions in physics and the parameters used in our model. The
theory of phase transitions draws its power from its ability to
encompass diverse types of complex physical systems, mapping
equivalent parameters from different physical systems onto each
other. Even though some of the correspondences are not im-
mediately intuitive, such as why density near the liquid–vapor
critical point should correspond to magnetization in Ising mag-
netic systems, the theory provides a framework to explain why
both of these quantities follow identical power law dependencies
with respect to temperature (20).
As the first correspondence, we note that the observed states of

matter come about through minimizing the free energy; in our
solutions this corresponds to maximizing the information. Second,
in physics, transitions occur with respect to temperature. In our
case they occur as a function of the average slope, ν= ðν1 + ν2Þ=2,
of the two response functions, which describes the average noise
in the neural responses. Third, in the Ising model, magnetization
spontaneously appears below the critical temperature; here, the
corresponding quantity is the threshold difference, m= μ2 − μ1,
between the thresholds of the optimal response functions, which
takes nonzero values below the critical noise level. Finally, to find
the quantity analogous to the applied magnetic field, we note that
an applied magnetic field induces nonzero magnetization even
above the critical temperature. In our case, we find that a differ-
ence in the noise in the two response functions, h= ν2 − ν1, induces
a nonzero optimal threshold difference between thresholds of the
response functions over a broad range of noise levels (Fig. 2A).
This suggests that the difference in the noise in the two response
functions, h, or more generally the SD of ν values across the
neural ensemble, is analogous to an applied magnetic field. We
have also verified this correspondence quantitatively by showing
that h, computed as the derivative of information with respect to
magnetization, is linear with respect to ν2 − ν1 (Fig. S2). In Fig.
2A, the curves for different hri values are plotted for the same
average noise value ν. Because the critical noise value νc depends
on the average firing rate hri of the two neurons, the curves for
different hri are effectively placed at different distances from
their respective critical points. This accounts for their spread.
Using these identified correspondences we can now determine

the type of phase transition that occurs in our model with de-
creasing noise level. In most cases a phase transition is defined as
a second-order transition when the singularities appear in the
second derivatives of the optimization function. First, we ex-
amined the second derivative of information with respect to
noise (Fig. S3A). This quantity is analogous to the specific heat,
C= ∂2I=∂ν2. We observe that C is largely independent from ν on
each side of the transition with a sudden drop across the critical
point. This is precisely the singular behavior expected based
upon mean-field calculations for magnetization in magnetic
systems, with smaller values observed above the critical tem-
perature (20). Second, we found that the second derivative of the
information with respect to h, χ = ∂2I=∂h2, with h being the dif-
ference in slope of the response functions, displays a singularity
at the critical point (Fig. S3B). This function χ is analogous to the
magnetic susceptibility in magnetic transitions, which is the sec-
ond derivative of the energy with respect to an applied magnetic
field (20), and is sometimes interpreted as describing the system’s
sensitivity to external perturbations (29). Mean-field calculations
indicate that this quantity should decay with an exponent of −1 as
a function of temperature difference from its critical value (20).
This matches the estimated exponent of −0.93 in our model (the
difference from −1 reflects imprecision of numerical simulations).
Thus, the transition we observe in neural circuits quantitatively
matches behavior of the Ising model near its critical point.
At the critical point when ν  =   νc; the difference m between

thresholds is zero and the difference in the noise of the two
response functions h is also zero. The distance of the system from
the critical point can thus be quantified by measuring how much
the difference in thresholds m and the difference in the noise
in the two response functions h differ from zero, as well as by the

A B C

D

Fig. 2. Optimal dynamic range placement by fast Off populations. (A) Op-
timal threshold difference,m = μ2 − μ1, as a function of the differences in the
slopes, ν2 – ν1, and the average rate hri (color), which is constrained to a fixed
value for each optimal solution. (B) Average slope values normalized by the
contrast, σ, for the same set of adapting and sensitizing cells from Fig. 1C.
(C) Information as a function of threshold difference between neurons. The
values for slopes and a rate constraint were matched to measurements from
a simultaneously recorded pair of adapting and sensitizing cells. The black
solid circles show the measured threshold difference at each contrast. Each
curve was normalized by the maximum information at that contrast (denoted
by color). The curves are vertically offset from each for better visualization.
(D) The average percentage of the maximum information reached for all cells
pairs (n = 7) at each contrast is >97% (dotted line). Colors correspond to the
colors from C. Error values, SEM, are obscured by the data points.
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deviation of average noise from its critical value ν− νc. Near the
critical point, these three quantities are not independent, but
rather scale as power-law functions of each other. Specifically,
the mean-field Ising model calculation predicts that m∝ jν− νcjβ
and m∝ h1=δ with β = 1/2 and δ = 3, respectively (20). We found
that both of these relationships held true for our model of neural
populations: with exponents β = 0.47 (Fig. S3C) and 1/δ = 0.34
(Fig. S3D), both of which closely matched their theoretical values
of 0.5 and 0.33 (20), respectively. Therefore, by all metrics a sys-
tem that maximizes information transmission in two populations
falls into the class of models described by the Ising model of
magnetism, which is called the Ising model universality class.

Fast Off Populations Remain Poised at the Critical Point. To examine
where retinal circuits are positioned relative to the critical point,
we measured where the threshold and slopes of each cell pair
laid relative to the critical noise value νc. However, we needed to
account for the fact that the average spike rate hri differs for
each pair of adapting/sensitizing neurons, and certain parame-
ters such as νc vary with hri. Fortunately, the dependence of νc on
hri is stereotypic and smooth (Fig. S4A) and could, therefore, be
normalized for each cell pair. In addition, in the equation that
relates the threshold difference m to the critical noise value
m=Ajν− νcjβ (Fig. S3C) the dependence of the coefficient A on
the average rate is also smooth (Fig. S4A). Finally, the scaling
exponents β and 1/δ do not depend on hri (Fig. S4B). This makes
it possible to transform the data into normalized coordinates
where variables m, h, and νc do not depend on hri (Fig. 3A). In
these normalized coordinates, we can view all of the data from
multiple pairs of cells relative to their respective critical points
(Fig. 3B). We find that for all pairs of cells across the full range
of contrasts the fast Off ganglion cells reside below the critical
noise value, in the regime where it is optimal to split the encoding
between response functions and two different thresholds. Thus,
although the position of the critical point changes with mean spike
rate, fast Off adapting and sensitizing cells maintain their re-
sponse functions to stay below the critical point. We also note that
whereas all of the results so far have been obtained for Gaussian
signals, when more natural, non-Gaussian distributions are used
as inputs, the parameters that characterize the singular behavior
exhibited by the mutual information do not change (Fig. S5). Such
robustness is expected for systems near phase transitions as part of
their “universal” properties where divergent behavior near the
critical point is not affected by changes in microscopic inter-
actions. Similarly to free energy, the mutual information is com-
puted by an average over the stimulus distribution. Changes in the
higher-order parameters of the stimulus distribution alter the
position of the critical point as a function of the spike rate but do
not change its main characteristics: Differences in slope values
still induce differences in thresholds and a single maximum in the
information function splits into two for lower noise values.

Retina Scaling Exponents of Ising Model Universality Class. Re-
markably, we find that even the deviations between the mean-
field theory predictions and the experimental measurements in
the retina matched the deviations observed in experiments on
physical systems. Experimental measurements for the exponent β
fall within a narrow range from 0.316 to 0.34 for all physical
systems within the Ising universality class, including liquid–gas
transitions in various substances, as well as ferromagnetic and
antiferromagnetic transitions (20). Fitting our experimental data
(Fig. 3B), we find a value, βretina = 0:39± 0:12 (Table 1). This
value is consistent (taking into account the error bars) with the
experimental observations in physical systems described by the
3D nearest-neighbor Ising model (20) and deviates from values
expected for Ising models with nearest-neighbor interactions in
other dimensions (Table S1). It is worth mentioning that, unlike
in the physical systems where temperature is under complete
experimental control, here we could not directly adjust ν, which
limits our ability to precisely estimate the scaling exponents of
our system from experimental data. For the exponent 1/δ,
experiments in systems from the Ising model universality class
produce values that are also shifted from the mean-field pre-
diction of 1/3 to 0.204–0.217 (Table S1). Our data shift in the
same direction, with a value 1=δretina = 0:15± 0:08. This value is
again consistent with the nearest-neighbor 3D Ising model
(taking into account the error bars). Thus, the direction and
magnitude of deviations that we observe here in the scaling
exponents suggest that they have the same origins as the devia-
tions observed in the physical systems from their mean-field
values. This quantitative agreement in the way physical systems
deviate from the mean-field predictions and the way the retina
deviates from our mean-field theory-derived model further
support the use of this simplifying framework in characterizing
the critical and maximally informative behavior of the retina.
An important aspect of adaptive neural systems is that they

adjust quickly to changing environments. In a natural sensory
environment, changes in contrast occur often and unpredictably
(30). To accommodate these changes in contrast, the slope of the
response functions must adapt accordingly (2, 31, 32), necessi-
tating an accompanying slow change in the threshold differences
between the response functions to maintain optimal encoding.
The fact that this process cannot and does not occur instantaneously
(32) provides an additional factor that should influence response
properties beyond a simple maximization of information trans-
mission in one steady environment. In a stationary, or steady-state,
regime, which corresponds to the analyses that we have carried
out, neurons with sharper tuning functions (smaller ν) provide a
greater amount of information (Fig. 1B). However, more narrow
tuning functions, corresponding to a lower temperature, require
more time to reach the optimal state. This phenomenon, known
in physics as critical slowing down (20), occurs in the neural
context because stimulus values that fall within the saturating
region of the response function cannot be measured accurately
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Fig. 3. Retinal populations adopt metastable states near the critical point. (A) In the model, the threshold difference m between cells is plotted against the
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and thus cannot trigger adaptation. Therefore, by using values of
ν near νc, which provide less absolute information (Fig. 1B), the
retina could be choosing an optimal strategy that it can reach
quickly, rather than transmitting the largest possible amount of
information at the expense of long adaptation times.
In support of these arguments, we found that although the

observed values of threshold difference m achieved >97% of the
maximum information (Fig. 2D), they were invariably smaller
than the optimal separation (Fig. 3B). Tellingly, the data points
lie near the so-called spinodal line that delineates the regions
between fast and slow dynamics near a critical point (gray line in
Fig. 3B). The dynamics necessary to increase m from the sub-
optimal point of zero (redundant encoding) to the spinodal line
require only infinitesimal perturbations, whereas the dynamics of
going from the spinodal line to the optimal line are expected to
be slow, requiring large fluctuations (20). Thus, the steady-state
value of the response curves was positioned to provide maximal
information while remaining close to the boundary of a region
that allowed for fast dynamics. Such properties of retinal
responses are likely to facilitate adaptation and maximize in-
formation transmitted in nonstationary sensory environments.

Discussion
In this work we have shown that information maximization can
explain the emergence and coordination of multiple cell types
devoted to encoding of the same visual feature. The theory
explains why neuronal types characterized by lower thresholds,
such as sensitizing cells (Fig. S1C), have steeper tuning functions
(Fig. 2B) compared with adapting cells that have higher
thresholds. The maximally informative solutions undergo a bi-
furcation when the steepness of neural response function exceeds
a certain value (Fig. 1B). The theory accounted for the bifur-
cation value without any adjustable parameters (Fig. 1 B–D).
These bifurcations represent a robust phenomenon, because they
persist even when the combinatorial representation of neural
responses is simplified to a pooling rule where the identities of
single neurons in the population are ignored (25) or when bell-
shaped tuning curves are optimized to maximize Fisher infor-
mation (33). We note that the separation of thresholds described
by such bifurcations likely acts in addition to changes in the pre-
ferred stimulus features that are known to occur in response to
changes in the effective noise level (34, 35).
The theory presented here does not explain directly why noise

in the Off pathway should be less than that of the On pathway
(26, 36). The functional advantages of such differences between
the On and Off pathways have been ascribed to a greater prev-
alence of negative over positive contrasts in natural scenes (13).
This excess of negative contrasts accounts for the larger number
of Off neurons compared with On neurons (13, 37). Our results

add to these an explanation of why Off neurons split into two
separate overlapping arrays of neurons with different thresholds
as opposed to remaining a single denser array.
The description of why neurons in the brain form new classes

from the information maximization perspective could be mapped
to the theory of transitions between different phases of matter in
physical systems (Table 1). Some of the connections make in-
tuitive sense—noise in neural responses corresponds to temper-
ature in physics—whereas other connections are more involved
but respect the general properties of the information function,
e.g., that it is an even function of m (Fig. 1B) and an odd function
with respect to h = ν2 − ν1 (Fig. 2A). The set of correspondences
described in Table 1 between the physical quantities and their
counterparts in neural coding has yielded a clear quantitative
match in the types of singularities that are observed in the two
fields of science (Table 1 and Fig. S3 C and D). It could also be
simply summarized by stating that in both physical and neural
systems the optimization functions near their respective critical
points behave approximately as

I ∝ Aðν− νcÞm2 +Bm4 +Chm; [1]

where A, B, and C are constants. This expression corresponds to
the Landau theory of phase transitions (20). The simple proper-
ties of this expansion formalize the argument that a neural circuit
will be robust to changes that do not affect the control parame-
ters, which consist of the mean ν and SD h of noise levels across
the population. These control parameters in turn determine the
optimal SD of thresholds m. As is the case for physical systems,
Eq. 1 predicts a continuous second-order transition for h= 0 and
a discontinuous first-order transition for h≠ 0. The signatures of
the second-order transition are apparent in Fig. 1B and Fig. S3C
where the threshold difference m varies continuously with ν for
h= 0. The first-order transition reveals itself through the abrupt
changes in m (Fig. 2A) when h changes sign for ν< νc. The dy-
namics of systems near first- and second-order transitions are
affected not only by optimal solutions corresponding to infor-
mation maximum but also by suboptimal “metastable” states.
These metastable states likely reflect the fact that adaptation
in neural systems does not occur instantaneously (32). The so-
called spinodal line delineates the boundary between metastable
and truly unstable states; it is also the curve along which the
Fisher information about control parameters h and ν is maxi-
mized (38). The retinal data points fall near the spinodal curve,
but on a side that corresponds to metastable as opposed to un-
stable solutions (Fig. 3B).
It should be emphasized that our theoretical derivations were

obtained to highlight differences in the response functions of

Table 1. Quantitative mapping between maximally informative solutions in the retina and Ising model of phase transitions in physics

Characterization Ising magnetic systems Maximally informative coding

Optimal states defined by Minima of free energy Maxima of information
Transitions occurs with respect to Temperature Input noise, average slopes of neural response functions
Symmetry broken below the critical temperature Magnetization direction Exchange symmetry between neurons*
Order parameter Magnetization SD of thresholds across a neural population†

Conjugate field Applied magnetic field SD of slopes from the mean across a neural population
Exponent with respect to temperature for h = 0 Mean-field value: 1/2 Mean-field value: 1/2

Experiment: 0.316–0.327 Our experimental value: 0.39 ± 0.12
Critical isotherm exponent Mean-field value: 1/3 Mean-field value: 1/3

Experiment: 0.2–0.21 Our experimental value: 0.15 ± 0.08

The order parameter is the parameter that measures the degree to which solutions below the critical point deviate from the symmetric solution present
above the critical point. The exponent β comes from the fit to the relationship between the threshold difference and the noise (Fig. S3C). The exponent 1/δ
comes from the fit to the relationship between the threshold difference and h, the difference between slopes of the two response functions (Fig. S3D). The
values (±SD) for the scaling exponents (β and 1/δ) for our system were determined by a bootstrap fit to the seven pairs of adapting and sensitizing cells in the
nine different contrasts, using the equation Ajν− νchjβ +Bh1=δ (Fig. 3B).
*See SI Text.
†See Fig. S2 for a quantitative verification of this definition.
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neurons from different subpopulations, such as Off adapting
and Off sensitizing cells, while ignoring differences in the re-
sponse functions within each population. This corresponds to
the mean-field approximation treatment of phase transitions in
physics (20). It is well known that mean-field theory summarized
by the expansion in Eq. 1 can capture qualitative features of sys-
tem behavior near the critical point, but its predictions for scaling
exponents deviate in a systematic way from experimental mea-
surements. In physical systems, these discrepancies have been re-
solved through the development of the renormalization group (RG)
theory that builds upon on mean-field approximation but then
takes into account the fluctuations in control parameters across
the array (20). In this case, a future goal will be to use RG theory
to take into account small differences in response parameters
across the retinal array and the fact that inputs to individual cells
are not perfectly correlated and differ among each other.
Our measurements of scaling exponents in the retina matched

experimental measurements in physical systems that correspond
to the 3D Ising model (Fig. 3B and Table 1), ruling out matches
to nearest-neighbor Ising models of other dimensions (Table S1).
Also consistent with a 3D Ising model is the previous observation
(15) of a cusp-like singularity in the quantity analogous to the
specific heat. Whereas the mean-field theory predicts that spe-
cific heat changes discontinuously across the transition (Fig.
S3A), RG corrections predict a cusp in agreement with experi-
ments in physical systems. One may wonder how the match to
the 3D exponent can be consistent with retinal ganglion cells
arranged in a 2D array. It turns out that, in terms of critical
exponents, an Ising model with interactions that extend beyond
nearest neighbors is more equivalent to a higher-dimensional
model than one based on nearest-neighbor interactions, with the
dimensionality depending on the spatial decay of the interaction
strength (39). Given that retinal receptive fields are centered on
a 2D lattice, our finding that critical exponents match the 3D
Ising model implies that the effective interaction strength, which
can be estimated using models from ref. 40, decreases with

distance r between receptive field center positions as r−3:309. This
parameter-free prediction can be tested in future studies.
The mapping that makes it possible to apply insights from the

theory of phase transitions to neural systems relies on a slight but
important change in perspective on what are analogous elements
between neural and magnetic systems. Previous studies have
typically identified single spins and spikes in single neurons as
analogous, because both are binary. We find that spins are more
analogous to differences in responses across neurons, which in
turns highlights the relative nature of the neural code. Overall, it
is fitting that a theory developed in physics to tackle the case of
complex systems with many interactive degrees of freedom can
also offer insights into the function of neural circuits. Perhaps
broader application of the ideas described here could explain the
existence of other classes of cells throughout the brain.

Materials and Methods
Recordings were done from larval tiger salamander retinas, using a 60-
electrode array as previously described (14). Experiments were performed in
accordance with Stanford University Animal Care and Use guidelines. Stimuli
were uniform field with a constant mean intensity of 10 mW/m2 and were
drawn from a Gaussian distribution and presented at 30 Hz. Contrast was
defined as the ratio between the SD and the mean of the intensity distri-
bution. Neurons were probed with nine uniformly spaced contrasts from 0.12
to 0.36 (SI Methods).
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