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Introduction to Real-Time PCR

Amy T. Cendaña, Ph.D.
Field Applications Scientist
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What is RealWhat is Real--Time PCR?Time PCR?
Technology to sensitively detect the real-time 

PCR amplification of nucleic acid targets.
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How is RealHow is Real--Time PCR similar to Time PCR similar to 
traditional PCR?traditional PCR?
● Similar reagents (dNTPs, PCR buffer, Taq

polymerase, etc.) are used
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How does RealHow does Real--Time PCR work?Time PCR work?

● Some form of fluorescencefluorescence is added to the PCR mix
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How is RealHow is Real--Time PCR similar to Time PCR similar to 
traditional PCR?traditional PCR?
● Reactions are cycled in a temperature block:

»Denaturating of template

»Annealing of primers and probe

»Extension of primers to make new     
amplicons
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How does RealHow does Real--Time PCR work?Time PCR work?
● Real-Time instrument has a thermal block, a 

light source to excite fluorescence, as well as 
a CCD camera to detect signal

Thermal Cycling Block

CCD camera

Light source
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PCR PCR

Lots of PCR

PCR product

How does realHow does real--time PCR work?time PCR work?

● As amplification proceeds, fluorescence will 
increase with product.
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How does RealHow does Real--Time PCR work?Time PCR work?

● Finally, data are presented graphically for 
easy analysis
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It all Starts with Good Sample Prep!It all Starts with Good Sample Prep!
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Sample PreparationSample Preparation
Untreated Cells Treated Cells

Nucleic acid isolation

RNA RNA
DNase-treatment

Reverse transcription

cDNA cDNA

11 © 2009 Applied Biosystems

AmbionAmbion : The RNA Company: The RNA Company
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Ambion RNA Isolation ProductsAmbion RNA Isolation Products
Tissue Disruption
• MELT™ **

Small RNA Isolation
• mirVana™ miRNA 
Isolation Kit

• PARIS™

• mirVana PARIS™ Kit

Total RNA Isolation
• RiboPure™ Kits 

• RNAqueous® Family 

• Tri Reagent™ **

• LeukoLOCK™

• RecoverAll™ Total Nucleic Acid Isolation 
from FFPE Tissues **

Bead-Based Isolation
• MagMAX™-96 Kits

• MagMAX™ Viral Kits **

• MagMAX™ Total Nucleic 
Acid Isolation Kit **

Complete Solution
• TaqMan® Gene Expression Cells-to-CT™

• TaqMan® miRNA Cells-to-CT™

• TaqMan® PreAmp Cells-to-CT™

• TaqMan® Fast Cells-to-CT™

** RNA/DNA Kits
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TaqManTaqMan®® Gene Expression Gene Expression CellsCells--toto--
CtCt™™ KitKit
● Go from cells to RNA in 7 minutes.
● No clean-up, no centrifugation, no precipitation – easily 

adaptable for high throughput.
● No loss of RNA.
● Lysis buffer compatible with downstream RT. 
● Complete kit:

– Lysis reagent
– Reverse transcription reagents
– TaqMan® Gene Expression Master Mix                                     
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Sample PreparationSample Preparation
Untreated Cells Treated Cells

Nucleic acid isolation

RNA RNA
DNase-treatment

Reverse transcription

cDNA cDNA
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TURBO DNATURBO DNA--freefree™™: gentle on RNA: gentle on RNA

17 © 2009 Applied Biosystems

Sample PreparationSample Preparation
Untreated Cells Treated Cells

Nucleic acid isolation

RNA RNA
DNase-treatment

Reverse transcription

cDNA cDNA
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Single-tube first strand synthesis:
• Very high efficiency – excellent 

conversion rate.
• Broad dynamic range – reproducible 

results over a large concentration 
range.

• Convenient 5x formulation.
• Optional no-RT control formulation 

tube.
• Liquid master mix at -20º –

eliminates freeze/thaw cycles.

High Capacity RNAHigh Capacity RNA--toto--cDNA Master MixcDNA Master Mix



4

19 © 2009 Applied Biosystems

QuestionsQuestions
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ChemistriesChemistries
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Supported Fluorescent ChemistriesSupported Fluorescent Chemistries

SYBRSYBR®® Green DyeGreen Dye55’’--NucleaseNuclease
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55’’--Nuclease Chemistry Nuclease Chemistry 
(TaqMan(TaqMan®® Assays)Assays)
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55’’--nuclease assay uses two nuclease assay uses two 
targettarget--specific primersspecific primers

Forward 
Primer

Reverse 
Primer
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In addition, a third In addition, a third oligooligo, called , called 
a a probe,probe, sits in the middlesits in the middle
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The probe is labeled with two The probe is labeled with two 
fluorescent dyesfluorescent dyes

Reporter dye Quencher dye
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FFluorescent luorescent RResonance esonance 
EEnergy nergy TTransferransfer

● Theodor Förster (1946) described an energy 
transfer mechanism between two fluorescent 
molecules  

● Fluorescent molecules within close proximity 
exhibit energy transfer from high to low
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Intact probeIntact probe
● Quencher (low energy) and reporter (high 

energy) in close contact 
● quencher “absorbs” signal

= No fluorescent 
signal (from 
reporter)

Energy

Light (excitation)

28 © 2009 Applied Biosystems

However, if probe can be split . . .However, if probe can be split . . .
● . . . the reporter will be free to fluoresce
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However, if probe can be split . . .However, if probe can be split . . .
● . . . the reporter will be free to fluoresce

SignalSignal
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DenaturationDenaturation
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AnnealingAnnealing
68-70°C58-60°C
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TaqTaq polymerase binds, then polymerase binds, then 
extends from upstream primerextends from upstream primer

Polymerase must be extending off of a 3‘ OH group
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What happens when What happens when TaqTaq reaches reaches 
the probe?the probe?

?
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TaqTaq is special . . .is special . . .

ExonucleaseExonuclease activityactivity
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What happens when What happens when TaqTaq reaches reaches 
the probe?the probe?

Probe will get digested*
*Must be associated with a 5‘ hydrogen bond
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5’-Nuclease activity digests probe

TaqTaq starts to cleave probe, thereby starts to cleave probe, thereby 
releasing reporter . . .releasing reporter . . .
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Probe digested; Probe digested; TaqTaq completes completes 
productproduct

“Permanent” reporter signal
generated in tube/well

Burp!
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RealReal--Time amplification detectionTime amplification detection

Amplification Plot

Fluorescence

Cycle Number
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Recommended concentrationsRecommended concentrations

● Probe: 200 – 250 nM (final concentration in 
reaction).

● Primers: 900 nM each.
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TmsTms of primers and probeof primers and probe

68-70°C58-60°C

Probe’s Tm should be several degrees 
higher than primers.
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7900HT Real7900HT Real--Time PCR SystemTime PCR System
-- Dye choicesDye choices

Reporter Molecules: FAM™, VIC®, JOE™,
NED™, TET ™

Quencher Molecules:
MGB (non-fluorescent), TAMRA™
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SYBRSYBR®® Green I ReactionGreen I Reaction
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SYBRSYBR®® Green Reaction (No Probe)Green Reaction (No Probe)

SYBRSYBR®® Green I DyeGreen I Dye
58-60°C
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SYBRSYBR®® Green I dyeGreen I dye
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SYBRSYBR®® Green I dyeGreen I dye
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SYBRSYBR®® Green I dyeGreen I dye
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SYBRSYBR®® Green I dyeGreen I dye

Denaturated DNA:
No Signal

Double Stranded DNA:
Signal
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RealReal--Time monitoring of Time monitoring of 
SYBRSYBR®® Green I reactionsGreen I reactions

Amplification plot
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SYBRSYBR®® Green I DyeGreen I Dye
When SYBR® Green I Dye is added to a PCR 
reaction it binds to any double stranded DNA.
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SYBRSYBR®® Green I DyeGreen I Dye
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SYBRSYBR®® Green I DyeGreen I Dye
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SYBRSYBR®® Green I DyeGreen I Dye
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SYBRSYBR®® Green I DyeGreen I Dye
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SYBRSYBR®® Green I DyeGreen I Dye
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Problem with SYBRProblem with SYBR®® Green I DyeGreen I Dye

Binds non-specifically to
any double-stranded DNA

Incorrect quantitative results

Signal from non-specific
products
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Check specificity of reactionsCheck specificity of reactions
using ausing a melt curvemelt curve

Temperature 

Fluorescence
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Melt curve:Melt curve: derivative viewderivative view

One, clean peak = no 
extraneous products

Temperature 

Fluorescence
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Extra peaksExtra peaks in melt curvein melt curve

May be primer dimer
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● Primers have too much homology for each 
other
(Forward Primer) CGTTCGATACGCTAT

(Reverse Primer) GCTACCTATGCGATA

What causes primer What causes primer dimerdimer??

• Primer : template ratio is too high
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Typical primer concentrationsTypical primer concentrations

50nM 300nM 900nM

50nM

300nM

900nM

Forward primer

R
ev

e r
se

 p
rim

er SYBR®?

TaqMan®
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Run a primer matrixRun a primer matrix

50nM 300nM 900nM

50nM

300nM

900nM

Forward primer

R
ev

e r
se

 p
rim

er XX

XX

XX
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Identify the primer combination Identify the primer combination 
with thewith the most sensitivity . . .most sensitivity . . .

•• Lowest CtLowest Ct

•• Highest fluorescence signalHighest fluorescence signal

•• Does Does NOTNOT have to be have to be equimolarequimolar
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Identify the primer combination with Identify the primer combination with 
thethe most sensitivity . . .most sensitivity . . .

50 / 50 nM

300 / 300 nM

900 / 900 nM
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. . . that also shows . . . that also shows minimal primer minimal primer 
dimerdimer

With this primer set, all 
primer combinations 
are clean.
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Which chemistry Which chemistry 
should you use?should you use?

TaqMan®,  or 
SYBR® Green? 

Hmmm . . .
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TaqManTaqMan®®, or  .  .  ., or  .  .  . SYBRSYBR®® Green I Dye?Green I Dye?
● Pros

– More specific 
– No concern about dimers
– Allows for multiplexing
– Minimal optimization

● Cons 
– Can be more expensive

● Pros
– Can be cheaper
– Good for many genes, 

few samples

● Cons
– Less specific
– Must run melt curves 
– No multiplexing
– Optimization
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Questions?Questions?
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Many possible applicationsMany possible applications

● Gene expression studies (e.g., mRNA)
● Copy Number Variation (transgenics)
● Gene expression studies (e.g., miRNA)
● siRNA knockdown validation
● Single Nucleotide Polymorphism (SNP) genotyping
● Viral detection
● Pathogen detection
● Human IDentification
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Quantitative RealQuantitative Real--Time Time 
PCRPCR
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RealReal--time quantitative PCRtime quantitative PCR
Method to measure Method to measure quantities quantities 

of a nucleic acid target.of a nucleic acid target.

••Gene ExpressionGene Expression
••Gene Copy Number Gene Copy Number 
••Viral LoadViral Load
••Drug TherapyDrug Therapy
••DNA DamageDNA Damage
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PCR has three distinct phasesPCR has three distinct phases

Early cyclesEarly cycles

••Reagents in abundanceReagents in abundance
••PCR product PCR product doublesdoubles

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #
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Geometric phaseGeometric phase
-- Product doubles every cycleProduct doubles every cycle

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #

GeometricGeometric
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PCR phasesPCR phases

Middle cyclesMiddle cycles

•• Reagents running out Reagents running out 
•• RReaction slows downeaction slows down

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #
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Linear phaseLinear phase
-- Reaction slowsReaction slows

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #

GeometricGeometric

LinearLinear
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PCR phasesPCR phases

Late cyclesLate cycles

•• Important Important reagent(sreagent(s))
depleteddepleted

•• Reaction stopsReaction stops

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #
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Plateau phasePlateau phase
-- Reaction stopsReaction stops

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #

GeometricGeometric

PlateauPlateauLinearLinear
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Traditional endTraditional end--point PCR:  point PCR:  
plateau phaseplateau phase

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #

GeometricGeometric

PlateauPlateauLinearLinear

EtBrEtBr -- GelGel
detectiondetection

Semi-
quantitative, 
at best
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RealReal--Time PCR:  Time PCR:  
Geometric phaseGeometric phase

PCR PCR 
productproduct
(log scale)(log scale)

Cycle #Cycle #

GeometricGeometric

PlateauPlateauLinearLinear

EtBrEtBr -- GelGel
detectiondetection Precise and 

accurate 
quantitation
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What does RealWhat does Real--Time PCR do?Time PCR do?
Provides easy access toProvides easy access to

highhigh--quality geometric phase data.quality geometric phase data.
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RealReal--Time Quantitative PCR:Time Quantitative PCR:

Absolute QuantificationAbsolute Quantification
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Use aUse a standard curvestandard curve

107 106 105 104 103

Do serial
dilutions
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At end of run, interpolate unknown At end of run, interpolate unknown 
CtsCts to curveto curve

Standard amt.

Cycle (Ct)

Qty = 2,500

10

100,000

10,000

1000

100

Unknown Ct
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Two curve typesTwo curve types

● Absolute standard curves:
– Actual copy number of standard is known.
– Bacterial / viral quantification

● Dilution (a.k.a. “relative standard”) curves
– Only dilution factor of standard is known.
– Gene expression
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RealReal--Time Quantitative PCR:Time Quantitative PCR:

Relative Gene ExpressionRelative Gene Expression
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Gene of interest: Plat1

Big question: How is the expression of Plat1 
changing when I treat my platypi?

Untreated platypus Treated platypus

Example experimentExample experiment
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Gene of interest: Plat1

Big question: How is the expression of Plat1 
changing when I treat my platypi?

Example experimentExample experiment

Untreated platypus Treated platypus
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Gene of interest: Plat1

Big question: How is the expression of Plat1 
changing when I treat my platypi?

Example experimentExample experiment

Untreated platypus Treated platypus
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First, a few general recommendationsFirst, a few general recommendations

1) Use a sample prep method that yields clean 
RNA of high integrity.
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A few recommendationsA few recommendations

1) Use a sample prep method that yields clean 
RNA of high integrity.

2) Be consistent in your RNA isolation method
from sample to sample.

3) DNase-treat samples.
4) Quantify unknown RNAs prior to RT step.
5) Use a reverse transcription kit with a very 

high-efficiency.
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Three validationsThree validations for a successful for a successful 
relative gene expression experimentrelative gene expression experiment
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Three Three separateseparate validation validation 
experimentsexperiments

1. What control gene should you use? 
2. How much RNA should you use in your 

reverse transcription reactions?
3. What are the PCR efficiencies of your assays?
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Validation #1:Validation #1: What What 
normalizer (control gene) normalizer (control gene) 

should you use?should you use?

93 © 2009 Applied Biosystems

For relative gene expression studies, For relative gene expression studies, 
we minimallywe minimally look at two geneslook at two genes

Gene of interest (target)

Normalizing gene (control)
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What is a normalizer?What is a normalizer?
(a.k.a. (a.k.a. ““control gene,control gene,”” ““housekeeping gene,housekeeping gene,””
““endogenous controlendogenous control””))

A gene that we show to be expressed 
consistently in all sample types, 

regardless of treatment, tissue origin, 
time point, etc.
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Function of a normalizerFunction of a normalizer

To mathematically account for sample-to-
sample differences in cDNA input amounts.
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Commonly used control genesCommonly used control genes

● 18s
● Beta-Actin
● GAPDH
● Cyclophilin
● HPRT
● GUS
● Etc.

Go to www.allgenes.com
for a list of endogenous
control genes / pre-
developed Assays.

Important thing: finding a 
normalizer that’s stable in 
your experimental system.



17

97 © 2009 Applied Biosystems

Where to begin your searchWhere to begin your search

Seek advice from the literature or from 
colleagues working in your system about 

what genes seem to remain stable.
The name of 
the gene you 
seek is . . .
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Always validate your candidate Always validate your candidate 
normalizer genenormalizer gene

Don’t simply trust what others say is a good 
choice as a normalizer. Prove that this 

gene is stable in your samples.

Just when I 
thought I knew 
the answer . . .
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How do you validate your How do you validate your normalizernormalizer??

● Isolate RNA from a representative group of samples 
and DNase-treat.

● Perform reverse transcription on each.
● RNase-treat; clean-up (get rid of free dNTPs).
● Quantify cDNAs.
● Do real-time with candidate normalizer using equal 

amounts of cDNA.
● Verify that Cts are consistent among samples.
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Two options for quantifying Two options for quantifying cDNAcDNA

Always check linear range of instrument!

Fluorometer (protocol: 
http://www.ambion.com/techlib/misc/cDNA_quant.html)

NanoDrop (1-2µl of undiluted sample)
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““Can I quantify RNA instead of Can I quantify RNA instead of 
cDNAcDNA for this validation?for this validation?””

You will only produce the same amount of cDNA IF your two samples
contain equal amounts of genomic DNA contamination, and IF they have 
the same RT efficiency.

1 ug Rev. transc.

RNA from
Untreated cells

RNA from
Treated cells

cDNA cDNA
Same amount?

Rev. transc. 1 ug

102 © 2009 Applied Biosystems

Untreated & treated samples Untreated & treated samples 
amplified by control gene amplified by control gene 

Ct range of 10.8-11.5

10 ng untreated 
samples

10 ng treated 
samples
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Human Endogenous Control PlateHuman Endogenous Control Plate

<0.5
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Questions?Questions?
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Validation #2 :Validation #2 : How much RNA How much RNA 
should you use in your RT should you use in your RT 

reactions?reactions?

RNARNA

106 © 2009 Applied Biosystems

What do we need to determine?What do we need to determine?

The range of acceptable RNA concentrations 
over which you observe 

linear reverse transcription efficiencies 
(target-, sample set-, and RT kit-specific).
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Why do we care?Why do we care?

You want to make certain that we start with an
appropriate amount of RNA for each gene.

Otherwise, your data could wind up 
being inaccurate.
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How do we determine how much to How do we determine how much to 
use?use?

Run RNA dilution curves
using all genes (normalizer and targets).
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How to set up RNA dilution curvesHow to set up RNA dilution curves

RNA (undil.)

1:10 dilution
1:100 
1:1000
1:10,000

RT cDNA
RT

RT

RT

RT

cDNA
cDNA
cDNA
cDNA

Run real-time standard curves using equal 
volumes of each cDNA.

This is a concentrated RNA sample, isolated and purified 
in a manner consistent with your other unknown RNAs. It 
can even be a mixture of unknowns.
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How to set up RNA dilution curvesHow to set up RNA dilution curves

RT cDNA
RT

RT

RT

RT

cDNA
cDNA
cDNA
cDNA

Do serial dilutions of the RNA. For higher 
concentration targets or large sample amounts, you may

need a larger dilution factor (say, 1:5 or higher).

RNA (undil.)

1:2 dilution

1:4

1:8

1:16
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How to set up RNA dilution curvesHow to set up RNA dilution curves

Individually convert each RNA into cDNA; use the same volume 
for each reverse transcription reaction.

RNA (undil.)

1:2 dilution

1:4

1:8

1:16

RT cDNA
RT

RT

RT

RT

cDNA

cDNA

cDNA

cDNA
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Finally . . .Finally . . .

Run in real-time with all genes,
using equal volumes

of each cDNA (in triplicate).
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Linear RNA dilution curvesLinear RNA dilution curves

Initial [RNA]

Ct

Target gene

Normalizer

(Note: each
point run
in triplicate)

undil.

1:16

1:8

1:4

1:2
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NotNot--soso--linear dilution curveslinear dilution curves

Initial [RNA]

Ct

Target gene

Normalizer

Q: What’s causing
this effect?
A: Partial inhibition 
of RT step
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Effect of inhibitors on RTEffect of inhibitors on RT

RNA (undil.)
1:2 dilution
1:4 
1:8
1:16

RT cDNA
RT

RT

RT

RT

cDNA
cDNA
cDNA
cDNA

Dirty
sample

Partial inhibition

less
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Case of extreme inhibitionCase of extreme inhibition

Initial [RNA]

Ct

Target gene

Normalizer

Complete failure on high end: 
very dirty RNA
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A small sampling of RT inhibitorsA small sampling of RT inhibitors

● Melanin
● Polysaccharides
● Hemoglobin
● Heparin
● Etc.

● EtOH
● Proteinase K
● Guanidinium
● Phenol

Inhibitors native to 
sample:

Inhibitors from RNA 
isolation step:

* Very dangerous: without consistent 
sample prep, contamination (and 
therefore inhibition) can vary 
dramatically from sample to sample.
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One other possible observationOne other possible observation

Initial [RNA]

Ct

Effect of the Poisson
Distribution
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Poisson, molecularly speakingPoisson, molecularly speaking

30 uL / 9 molecules

10μL

10μL

10μL

How often do we end up with 3 molecules in each tube?
Answer: Not too often.

120 © 2009 Applied Biosystems

Questions?Questions?
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Validation #3:Validation #3: What are the PCR What are the PCR 
efficiencies of my Assays?efficiencies of my Assays?
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Two ways to do relative quantitative Two ways to do relative quantitative 
PCRPCR

Comparative Ct 
(ΔΔCt) Method

Relative Standard 
Curve Method

SampleSample--toto--sample sample 
fold changesfold changes
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How do they differ?How do they differ?

● No standard curves
● Easier, cheaper, higher 

throughput
● Extra validation step

● Run standard curves 
with each gene in each 
experiment

● More work, costlier, 
lower throughput

Comparative Ct 
(ΔΔCt) Method

Relative Standard 
Curve Method

124 © 2009 Applied Biosystems

How do they differ?How do they differ?

● No standard curves for 
each experiment

● Easier, cheaper, higher 
throughput

● Run standard curves 
with each gene in each 
experiment

● More work, costlier, 
lower throughput

Comparative Ct 
(ΔΔCt) Method

Relative Standard 
Curve Method
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ΔΔΔΔCt generally the method of choiceCt generally the method of choice

● No standard curves for 
each experiment

● Easier, cheaper, higher 
throughput

● Run standard curves 
with each gene in each 
experiment

● More work, costlier, 
lower throughput

Comparative Ct 
(ΔΔCt) Method

Relative Standard 
Curve Method
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One big requirement of One big requirement of ΔΔΔΔCtCt

Your two genes (target and normalizer) 
must have approximately the same 

amplification efficiencies!
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Steps for doing Steps for doing ΔΔΔΔCtCt

Efficiencies are sometimes confirmed by 
running the assays side-by-side and 

confirming that they have parallel 
amplification curves.
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Target and control have equal Target and control have equal 
efficiencies in geometric phaseefficiencies in geometric phase

Normalizer
Target

129 © 2009 Applied Biosystems

More mathematical approach . . .

130 © 2009 Applied Biosystems

Run dilution curves and compare Run dilution curves and compare 
slopesslopes

[cDNA]

Ct

Target

Normalizer

Slope = -3.38

Slope = -3.32
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Standard curves give us an idea of Standard curves give us an idea of 
PCR efficienciesPCR efficiencies

● For example, a slope value = -3.3 suggests the 
primers are amplifying with approximately 100% 
efficiency.

● A more negative number (say, -3.5) suggests a 
less than 100% efficient reaction.

Calculation:  E = 10(-1/slope) -1
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#1 mistake among my real#1 mistake among my real--time time 
customers customers 

Generating inaccurate dilution curves (and 
thus inaccurate efficiency calculations).
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Suggestions for accurate dilution  Suggestions for accurate dilution  
curvescurves
● Don’t:

– Make a three-point curve of two-fold dilutions.
● Do:

– Make a minimum five-point curve of ten-fold 
dilutions (four logs).

– Eliminate outlying replicates or, when 
necessary, entire dilution points.
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Dilution curve with outliers Dilution curve with outliers 

135 © 2009 Applied Biosystems

WhatWhat’’s the efficiency?s the efficiency?

Better than perfect . . . 
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Check correlation coefficientCheck correlation coefficient

Should be ≥ 0.99
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Omit outliers Omit outliers 
X

X

X
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Removal of outliersRemoval of outliers
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Correlation and slope now good
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Final suggestion for accurate dilution Final suggestion for accurate dilution 
curvescurves
● For low concentration targets, you may need to 

use plasmid to generate accurate curves.
– Involves . . .

• PCR-amplifying target
• Cloning into a PCR-ready vector
• Using this for dilution curve to check efficency
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Back to validation . . .Back to validation . . .

[Template]

Ct

Target

Normalizer

Slope = -3.38

Slope = -3.32
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Slope values of control and target Slope values of control and target 
genes . . .genes . . .

Should be within ~0.1
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Equal efficiencies allow us to choose Equal efficiencies allow us to choose 
the the ΔΔΔΔCt methodCt method

Comparative Ct 
(ΔΔCt) Method

Relative Standard 
Curve Method
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Steps for Steps for ΔΔΔΔCCTT

Perform real-time run using control gene and 
target gene on unknown samples (use at least 
triplicates per sample for each gene).

No-template controls (NTCs) – contamination check
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Example of Example of ΔΔΔΔCtCt mathmath

Sample Sample X      NX      N 22--CtXCtX 22--CtNCtN X/N      S/CX/N      S/C
Treated 1 Treated 1 24    1424    14 5.9e5.9e--88 6.1e6.1e--5   9.7e5   9.7e--4     24     2
Treated 2Treated 2 20    1120    11 9.5e9.5e--77 4.8e4.8e--4   1.9e4   1.9e--3     43     4
Untreated Untreated 24    1324    13 5.9e5.9e--88 1.2e1.2e--4   4.8e4   4.8e--4     14     1

Avg. Ct values 
of replicates

X = Target
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Need to consider normalizer gene Need to consider normalizer gene 
valuesvalues

Sample Sample X      NX      N 22--CtXCtX 22--CtNCtN X/N      S/CX/N      S/C
Treated 1 Treated 1 24    1424    14 5.9e5.9e--88 6.1e6.1e--5   9.7e5   9.7e--4     24     2
Treated 2Treated 2 20    1120    11 9.5e9.5e--77 4.8e4.8e--4   1.9e4   1.9e--3     43     4
Untreated Untreated 24    1324    13 5.9e5.9e--88 1.2e1.2e--4   4.8e4   4.8e--4     14     1

Avg. Ct values 
of replicates

X = Target    N = Normalizer
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Normalize data via subtractionNormalize data via subtraction

Sample       X     N       Sample       X     N       ∆∆CtCt
Treated 1Treated 1 24    1424    14 1010
Treated 2Treated 2 20    1120    11 99
Untreated Untreated 24    1324    13 1111

X = Target    N = Normalizer

-
-
-
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Why are we subtracting Ct values Why are we subtracting Ct values 
instead of dividing?instead of dividing?
● Ct values are exponents, not linear values.
● Therefore, we should never literally divide Cts.
● In short, we divide Cts through subtraction. 

(example: 225 ÷ 220 = 25)
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Next, choose a Next, choose a reference samplereference sample

● This is a sample to which you will be comparing 
all other samples.

● Generally, this is the “untreated sample.”
● Allows for easier sample-to-sample comparisons. 

Instead of having . . .

Untreated: .074

Treated 1: .148

Treated 2: .222

You will instead have . . .

Untreated: 1

Treated 1: 2-fold increase

Treated 2: 3-fold increase

/.074

/.074

/.074
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Pick a reference samplePick a reference sample

Sample       X     N       Sample       X     N       ∆∆CtCt
Treated 1Treated 1 24    14       1024    14       10
Treated 2Treated 2 20    11         920    11         9
Untreated Untreated 24    13       1124    13       11

Fold change in log form

X = Target    N = Normalizer

--1111

--1111
--1111

∆∆∆∆CtCt

00
--22
--11

Still logs, so we must subtract
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Convert from log to linearConvert from log to linear

Sample       X     N       Sample       X     N       ∆∆CtCt ∆∆∆∆CtCt
Treated 1Treated 1 24    14       1024    14       10 --11
Treated 2Treated 2 20    11         920    11         9 --22
Untreated Untreated 24    13       1124    13       11 00

Relative quantification 
(fold change) values

22--∆∆∆∆CtCt

11
44
22

Ref. sample always 
has final value of 1

152 © 2009 Applied Biosystems

Best part about 7900 software?Best part about 7900 software?
(RQ Manager 1.2)(RQ Manager 1.2)

It does all the math for you!
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Questions?Questions?
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Where can I find technical help?Where can I find technical help?
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Getting Started GuidesGetting Started Guides
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ABI online supportABI online support
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Technical Support HotlineTechnical Support Hotline

11--800800--762762--40014001
TAC (Instrument Support)TAC (Instrument Support)

11--800800--327327--3002, option 43002, option 4
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Amy T. Cendaña, Ph.D.
Field Applications Scientist  

amy.cendana@appliedbiosystems.com

RealReal--Time Technical Support: Time Technical Support: 
800800--762762--40014001
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Trademarks

For Research Use Only. Not for diagnostic procedures. 

●TaqMan® Gene Expression and SNP Genotyping Assays:
Practice of the patented 5’ Nuclease Process requires a license from Applied Biosystems. The purchase of a TaqMan® Assay includes an immunity from suit under patents specified in the product insert to use 
only the amount purchased for the purchaser's own internal research when used with the separate purchase of an Authorized 5’ Nuclease Core Kit. No other patent rights are conveyed expressly, by implication, or 
by estoppel. 
●TaqMan® Universal PCR Master Mix:
Practice of the patented 5’ Nuclease Process requires a license from Applied Biosystems. The purchase of this product includes an immunity from suit under patents specified in the product insert to use only the 
amount purchased for the purchaser's own internal research when used with the separate purchase of Licensed Probe. No other patent rights are conveyed expressly, by implication, or by estoppel.
●TaqMan® PreAmp Master Mix:
Purchase of this product includes an immunity from suit under patents specified in the individual product insert(s) to use only the amount purchased for the purchaser’s own internal research. No other patent rights 
are conveyed expressly, by implication, or by estoppel.  
●Purchase of AmpErase® UNG is accompanied by a limited license under U.S. Patent 5,035,996 and foreign equivalents to use for research.
●Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.
●Applied Biosystems, AB (Design), ABI PRISM, Primer Express, and VIC are registered trademarks and Applera, FAM, MultiScribe, PANTHER, and ROX are trademarks of Applera Corporation or its subsidiaries 
in the US and/or certain other countries. 
●Applied Biosystems, ABI PRISM and its design, MicroAmp and VIC are registered trademarks and FAM, ROX, TAMRA, AB (Design), iScience, iScience (Design), Applera are trademarks of Applera Corporation 
or its subsidiaries in the US and/or certain other countries.
●AmpErase, AmpliTaq Gold and TaqMan are registered trademarks of Roche Molecular Systems, Inc.
●SYBR Green is a registered trademark of Molecular Probes, Inc.
●All other trademarks are the sole property or their respective owners.
©2006 Applied Biosystems. All rights reserved.

●Trademark/Licensing
●For Research Use Only. Not for use in diagnostic procedures.
●TaqMan® Assays:
●NOTICE TO PURCHASER: LIMITED LICENSE
●A license to perform the patented 5’ Nuclease Process for research is obtained by the purchase of (i) both Licensed Probe and Authorized 5' Nuclease Core Kit, (ii) a Licensed 5’ Nuclease Kit, or (iii) license rights 
from Applied Biosystems. 
●The TaqMan® Gene Expression and SNP Genotyping Assays contain Licensed Probe. Use of these products are covered by one or more of the following US patents and corresponding patent claims outside the 
US:  5,538,848, 5,723,591, 5,876,930, 6,030,787, 6,258,569, and 5,804,375 (claims 1-12 only). The purchase of these products includes a limited, non-transferable immunity from suit under the foregoing patent 
claims for using only this amount of product for the purchaser’s own internal research. Separate purchase of an Authorized 5' Nuclease Core Kit would convey rights under the applicable claims of US Patents Nos. 
5,210,015 and 5,487,972, and corresponding patent claims outside the United States, which claim 5’ nuclease methods. No right under any other patent claim and no right to perform commercial services of any 
kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. These products are for research use 
only. Diagnostic uses under Roche patents require a separate license from Roche. 
●Applied Biosystems Real-Time PCR Systems:
●The Applied Biosystems Real-Time PCR Systems are covered by patents owned by Applera Corporation. 
●Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.
●The SYBR® Green dye is sold pursuant to a limited license from Molecular Probes, Inc. under U.S. Patent No. 5,436,134 and 5,658,751 and corresponding foreign patents and patent applications.
●Applied Biosystems, AB (Design), LIZ, and VIC are registered trademarks and Applera, FAM, JOE, ROX, and TAMRA are trademarks of Applera Corporation or its subsidiaries in the US and/or certain other 
countries. AmpliTaq Gold and TaqMan are registered trademarks of Roche Molecular Systems, Inc. SYBR is a registered trademark of Molecular Probes, Inc.
●©2006 Applied Biosystems. All rights reserved.
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