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Abstract Animals have evolved intricate search strategies to find new sources of food. Here, we 
analyze a complex food seeking behavior in the nematode Caenorhabditis elegans (C. elegans) to 
derive a general theory describing different searches. We show that C. elegans, like many other 
animals, uses a multi-stage search for food, where they initially explore a small area intensively 
(‘local search’) before switching to explore a much larger area (‘global search’). We demonstrate 
that these search strategies as well as the transition between them can be quantitatively explained 
by a maximally informative search strategy, where the searcher seeks to continuously maximize 
information about the target. Although performing maximally informative search is computationally 
demanding, we show that a drift-diffusion model can approximate it successfully with just three 
neurons. Our study reveals how the maximally informative search strategy can be implemented and 
adopted to different search conditions.
DOI: 10.7554/eLife.04220.001

Introduction
In considering animal behavior and decision-making, it is exciting to consider the proposal (Polani, 
2009; Tishby and Polani, 2011) that animals may be guided by fundamental statistical quantities, 
such as the maximization of Shannon mutual information (Cover and Thomas, 1991). The advan-
tage of mutual information as a measure is that its maximization encompasses optimization according 
to many other statistical measures, such as the peak height or the variance of the distribution. These 
other measures would give valid results only in certain contexts, such as for predominantly unimodal 
or Gaussian probability distributions underlying the decision variables. The fact that mutual informa-
tion can be used with different types of probability distributions makes it possible to quantitatively 
compare the efficiency of behavioral decisions across species, sensory modalities, and tasks. Indeed, 
this idea has already yielded insights into diverse behaviors including human eye movements patterns 
(Najemnik and Geisler, 2005) and animal navigation in a turbulent environment (Vergassola et al., 
2007; Masson et al., 2009). Both these patterns of behavior can be accounted for by adapting a 
maximally informative search strategy to the appropriate behavioral context. This model allocates 
some actions to improving the estimate of the goal's position rather than directly moving the animal 
towards the goal (Najemnik and Geisler, 2005; Vergassola et al., 2007). In these contexts, behavioral 
analyses have shown that strategies aimed at moving directly toward a goal are unable to explain key 
features of the animal's response. For example, humans sometimes make saccades to examine a 
region between, rather than directly at, the two likely locations for a target (Najemnik and Geisler, 
2005). Similarly, birds and moths zigzag perpendicular to the wind direction to find the source of an 
odor plume (Vergassola et al., 2007). Information-maximization (‘infotaxis’) is consistent with direct 
strategies such as chemotaxis in certain conditions. When the information content of the environment 
is very high, such as when chemical gradients can be tracked reliably, strategies based on information 

*For correspondence: sharpee@
salk.edu

Competing interests: The 
authors declare that no 
competing interests exist.

Funding: See page 12

Received: 01 August 2014
Accepted: 03 November 2014
Published: 09 December 2014

Reviewing editor: Ranulfo 
Romo, Universidad Nacional 
Autonoma de Mexico, Mexico

 Copyright Calhoun et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

RESEARCH ARTICLE

http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
http://dx.doi.org/10.7554/eLife.04220
http://dx.doi.org/10.7554/eLife.04220.001
mailto:sharpee@salk.edu
mailto:sharpee@salk.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Neuroscience

Calhoun et al. eLife 2014;3:e04220. DOI: 10.7554/eLife.04220 2 of 13

Research article

maximization converge to chemotaxis (Vergassola et al., 2007). Thus, an information maximiza-
tion approach can be viewed as a generalization of following direct sensory gradients to a broader and 
more challenging set of behavioral tasks.

Among the multitude of decisions that animals make throughout the day, foraging for food is 
perhaps the most challenging and critical for survival. Interestingly, a number of species have been 
reported to spend more time in areas where they have recently observed food (Karieva and Odell, 
1987; Benedix, 1993), suggesting that there might be an underlying logic to search that general-
izes across species. Recent experimental studies have observed similar foraging patterns in the 
nematode Caenorhabditis elegans (Hills et al., 2004; Wakabayashi et al., 2004; Gray et al., 
2005; Chalasani et al., 2007). After removal from food, the animal first performs an intense search 
around the area where it believes food is likely to be located (Figure 1A). This period is character-
ized by an increased number of abrupt turns allowing the animal to stay in the proximal area 
(Figure 1B) and is termed ‘local search’. After approximately 15 min, animals reduce their number 
of turns to a basal rate (Figure 1B). This produces more extended trajectories (Figure 1A) and 
allows the animal to leave the proximal zone and explore a much larger area (‘global search’). 
Although C. elegans is traditionally considered to be a chemotactic searcher (Ferree and Lockery, 
1999; Pierce-Shimomura et al., 1999; Iino and Yoshida, 2009), moving up or down chemical 
gradients to find the source of an odorant, in these conditions animals have no chemical gradient 
to follow. We set out to explore whether a single underlying strategy could explain the different 
aspects of food search behavior in this well-studied model.

Results
Maximally informative search strategies describe both local and global 
search states
Since C. elegans performs a food search even in the absence of a gradient (Hills et al., 2004; 
Wakabayashi et al., 2004; Gray et al., 2005), they must have a prior belief about how food is distrib-
uted in the environment. For the sake of simplicity, we assume that the probability of finding food is 
initially distributed as a two-dimensional Gaussian distribution, which imposes the minimal structural 
constraint beyond the variance of the spatial distribution (Jaynes, 2003). When searching through this 
space, an animal using the maximally informative trajectory should move in the direction that maxi-
mizes its information about the location of food. This can be calculated by taking into account the 

eLife digest How an animal forages for food can make the difference between life and death, 
and there are several different searching strategies that may be adopted. Foraging could be more 
productive if animals could take into account any of the patterns with which food is distributed in 
their environment, but how much could they measure and memorize? Calhoun et al. show that a 
tiny worm called Caenorhabditis elegans can keep track of how its previous food finds were spread 
out, and uses this knowledge to optimize future searches for food.

When C. elegans forages, it begins by performing an intensive search of where it believes food  
is likely to be found. This strategy, called ‘local search’, is characterised by the worm making 
numerous sharp turns that keep it in its target search area. If the worm has not found food after  
15 min, it abruptly switches its behavior to a so-called ‘global search’ strategy, which features fewer 
sharp turns and more forays into the surrounding area.

C. elegans is often thought to follow the smell of a food source in order to locate it. While 
reliable on small scale, this strategy can prove problematic when the distribution of food is patchy. 
Calhoun et al. show that in extreme conditions, such as when food is completely removed, the 
animals determine where and for how long to persist with their search based on their knowledge of 
what was typical of their environment. Such a strategy is called infotaxis, which literally means 
‘guided by information’. While the neural circuits underpinning these behaviors remain to be found, 
Calhoun et al. propose a model that suggests that these circuits could be relatively simple, and 
made up of as few as three neurons.
DOI: 10.7554/eLife.04220.002
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probability that the nearby environment would emit food odor and then estimating the change in 
information the animal expects will result from any detection or non-detection events (Vergassola 
et al., 2007). This means that even a non-detection of a food odorant is informative as it lessens the 
likelihood that food is nearby. Ultimately, the probability of detecting an odorant depends on the 
likelihood of food sources across the environment ( )r



. Information maximization can be analyzed with 
respect to this quantity, see ‘Materials and methods’ for details. Analyzing these solutions, we find that 
the maximally informative trajectories first take the searcher towards the peak in the maximum likeli-
hood of food distribution (Figure 2A) and then follow an outward motion (Figure 2B). This intensive 
search of a small area is qualitatively consistent with the local search performed by C. elegans.

Given an infinitely sized arena, this spiral-like motion would continue indefinitely (Barbieri et al., 
2011). However, searchers only have knowledge of a finite area (the full extent of the area shown in 
Figure 2A–B). Further, it is not necessarily true that there will always be food near where it has been 
seen before. Thus, we have to allow for the possibility that food will not be in the nearby area. In math-
ematical terms, we allow for the probability that a food source is in the nearby area to deviate from 1. 
Initially, this probability was set to be very close to one (within numerical accuracy, deviation from 1 
was ∼10−100). However as the search progressed, and no odorants were detected, this probability 
decreased according to the Bayesian rule:

( ) ( )+1

( = 0 | )
| = 0 = ,

( = 0)
t t

P n A
p A n p A

P n  
(1)

where ( ) ( )+1 +1= | = 0t tp A p A n  is the updated probability given that n = 0 odor detections were 
observed. The update rule in Equation (1) reflects the fact that, while the searcher at each step 
expects to detect a certain number of odorants, none are detected because the source is absent. 
While initially ( )0

p A  is set very close to 1, it gradually decreased to zero. We found that allowing 
the probability to decrease during the search causes the local search to consistently end abruptly 
at locations that were very far from the boundaries of modeled area A (Figure 2B). The abrupt 
transition occurred for any initial values of ( )0

p A  as long as it was not identically equal to 1 at the 
start of the search. [If ( )0

= 1, p A , then the probability to find food outside of the local area is zero 
and it will remain so even after the Bayesian update in Equation (1)]. After the transition, the search 

Figure 1. Transition between local and global search in C. elegans foraging trajectories following their removal from food. (A) Animals search the local 
area by producing a large number of turns before abruptly transitioning to a global search. (B) Across many animals, this transition is readily apparent in 
the mean turning rate. Standard error of the mean is shown as the lightly shaded region around the solid average line.
DOI: 10.7554/eLife.04220.003
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trajectory would then follow a straight path to the boundary of the modeled area (Figure 2A–B). 
These features of search trajectories are consistent with C. elegans transitioning between local and 
global search.

Maximally informative strategies quantitatively describe foraging 
trajectories
One interesting feature of this maximally informative search strategy is the abruptness of the transi-
tion. Movement around the peak initial belief is followed by a sudden switch to motion away from it. 
The transition from local to global search corresponds, at least in the model, with the searcher's esti-
mate that the probability that food is located elsewhere equals 1 (Figure 2C). This indicates that qual-
itative changes in behavioral state arise due to beliefs that no longer reflect old information.

As described above, in the maximally informative model, the transition between the local and 
global states of the search occurs abruptly. In experiments, the reduction in the number of turns 
appears to occur gradually (Figure 1B). However this difference could be an artifact of the averaging 
of trajectories across multiple worms. In contrast, individual worm trajectories could still have sharply 
defined transitions, as can be seen in Figure 1A. To investigate the sharpness of this transition within 
individual worm trajectories, we applied a Hidden Markov model framework (Abeles et al., 1995; 
Seidemann et al., 1996; Bishop, 2004; Jones et al., 2007; Miller and Katz, 2010) to experimentally 
recorded trajectories. If segments of single-animal trajectories represent mixtures of states corre-
sponding to local and global parts of the search, then the probability of observing global search pat-
terns will increase gradually. However, analysis of experimental traces revealed a sharp transition 
between local and global search states on the order of a few minutes (Figure 3A,B). Thus, the search 
trajectories both in experiment and theory exhibit a sharp transition between the local and global 
parts of the search.

Next, we examined whether the infotaxis framework could quantitatively account for the distri-
bution of worm search trajectories. The infotaxis model contains three independent parameters: the 
width of the initial prior probability distribution, filter length representing physical parameters, 
and how close the initial values for ( )0

p A  was set to 1 (See ‘Materials and methods’). Fitting these 
parameters of the infotaxis model, it is possible to quantitatively account for the experimental 
distribution of worm positions at the end of local search (Figure 4A). Importantly, the same set val-
ues of these parameters adjusted to match the spatial distribution (Figure 4A) also produced 
(without re-adjustment) the cumulative distribution of local search duration and matched experimental 

Figure 2. Maximally informative trajectories exhibit abrupt transitions between spiral-like and straight motion towards the boundary. (A) Initial trajecto-
ries of the model head directly towards the peak probability of finding an odor source. (B) After some period of time the model displays an abrupt 
transition in behavior from a spiral-like motion to a straight motion towards the boundary. (C) The log probability that the food is elsewhere consistently 
increases as the search progresses. The transition between local (spiral-like) and global (straight motion towards the boundary) search occurs when this 
probability approaches 1.
DOI: 10.7554/eLife.04220.004
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measurements (Figure 4B, two-sample Kolmogorov–Smirnov test, p = 0.45). The conversion between 
the spatial axis in Figure 4A and the temporal scale in Figure 4B is set by the calculated value of 
the worm's speed (∼0.17 mm/s), and does not represent an adjustable parameter. Thus, the info-
taxis model can quantitatively account for the properties of worm search behavior after removal 
from food.

animals

adapting
process

Figure 3. Sharp Transition between local and global phases of the search. We used a Hidden Markov model to 
estimate the probability that animal's behavior falls into one of two states. (A) Example analysis based on a single 
trajectory shows fast (several minutes) switching time between the local and global phases of the search. (B) The 
distribution of transition durations across a set of trajectories from different animals.
DOI: 10.7554/eLife.04220.005

Figure 4. Infotaxis model quantitatively accounts for the worm trajectories. (A) The distribution of worm displace-
ments from an initial position at the end of the local search is non-Gaussian and can be fitted using the three 
parameters (See ‘Materials and methods’) of the infotaxis model. (B) The same set of parameters also accounts  
for the cumulative distribution for the local search duration across different individual worms.
DOI: 10.7554/eLife.04220.006
The following figure supplement is available for figure 4:

Figure supplement 1. Comparison of measured local search duration times with predictions based on chemotaxis 
and infotaxis models. 
DOI: 10.7554/eLife.04220.007
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Comparison with chemotaxis model
One may wonder whether other search strategies could also account for food search behavior in worms. 
Among these, chemotaxis represents the most widely used and parsimonious model of animal beha-
vior (Brown and Berg, 1974; Pierce-Shimomura et al., 1999, 2005; Iino and Yoshida, 2009).  
A searcher using this strategy would be expected to transiently increase its turning rate when removed 
from food due to a sudden, large change in food gradient. The subsequent decline in the number of 
turns would then be explained by adaptation to the low (zero) odorant concentration. Although this 
explanation seems plausible, it could not quantitatively account for three properties of foraging trajec-
tories: (i) the long duration of the local search, (ii) the rapid exit from the local search state, and (iii) the 
inability of food concentration to influence local search. An explanation based on adaptation with a 
single time constant could be ruled out based on the juxtaposition between the relatively long dura-
tion of the local search with the fairly rapid transition between the local and global phases of the 
search. Adaptation with a slow time constant could explain the fairly substantial duration of the local 
search but not its sharp transition to a global search. On the other hand, adaptation with a short time 
constant could match the low number of turns during the global search but would underestimate the 
number of turns and the duration of the local phase of the search (Figure 5A). Quantitatively, adjusting 
the adaptation time constant to match the observed durations of the local search phase produces 
trajectories with much broader transitions between local and global phases of the search than is 
observed experimentally (Figure 3B, comparison between the solid line and histograms, see also 
Figure 4—figure supplement 1).

Perhaps a more striking illustration as to why chemotaxis does not fully describe the foraging tra-
jectories comes from experiments where worms are transferred from patches of food of the same size 
but with different concentrations. The chemotaxis model makes predictions based on the change in 
odorant concentration. This change will be smaller for animals that are removed from patches with 
more diluted food. Therefore, the chemotaxis model in this case would predict that animals will make 
a smaller number of turns (Figure 5B). In contrast, the infotaxis model makes predictions based not on 
the last odorant concentration that the animal experienced prior to its removal from food, but on the 
relative distribution of food in the environment. The spatial variance of this distribution is not affected 
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Figure 5. Foraging trajectories deviate from predictions of the chemotaxis model. The chemotaxis model  
explains the reduction in the average number of turns as adaptation to low odorant concentration. (A) For different 
adaptation times, the predicted dynamics of turn rate can match either the slow decay in the beginning of the 
search or the small rate of turning at the end of the search, but not both. Black lines are predictions using adapta-
tion while red shows experimental measurements. (B) The average number of turns is unaffected by changes in 
food concentration (black), in contrast to chemotaxis predictions (grey bar) and in agreement with the infotaxis 
predictions (dashed line).
DOI: 10.7554/eLife.04220.008
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by the dilution. Therefore, the infotaxis model would predict that the animals will make the same 
number of turns regardless of the bacteria concentration within the lawn, provided the lawns have the 
same size. This prediction was supported by our measurements (Figure 5B). Overall, we have found 
that C. elegans behavior when removed from food cannot be explained as chemotaxis but is con-
sistent with infotaxis.

Drift-diffusion approximation to the maximally informative search
The results we have presented so far argue that the quantitative characteristics of animals' behavior 
match what would be expected for an optimal, maximally informative (Vergassola et al., 2007) or 
(equivalently) Bayesian (Najemnik and Geisler, 2005) model of search. This model continuously 
updates the likelihood of a food source being present throughout the duration of search. At first 
glance, these calculations require the ability to maintain and update the corresponding “mental 
maps” of the environment. However, the animals could also approximate complex computations 
with empirically-tuned simple search heuristics that have only slightly smaller than maximal yields. 
Interestingly, as the search progresses, the log probability ( )1– tp A  that the food is located else-
where accumulates. Broader priors require more time to come to the conclusion that food is located 
elsewhere. When this probability reaches one, the local phase of the search ends and the global 
phase begins. The approximately linear increase in the log probability ( )1– tp A  observed during 
most of the local search duration (after the initial period of supra-linear increase, cf. Figure 2C) sug-
gests that the timing of the transition from the local to global search could be accounted for by a 
simple drift-diffusion model (Bogacs et al., 2006; Insabato et al., 2006). In our set-up the drift-
diffusion model has effectively only one parameter—the drift rate. While in most applications drift-
diffusion models are considered together with an adjustable threshold, here the lower threshold 
value is fixed to 0 because the dynamical variable represents probability. Similarly, the starting value 
of this probability (which we set to be just under 1) also has relatively weak influence on the duration 
of local search. This is because the initial decrease in ( )ln[1– ]tp A  occurs supra-linearly before settling 
on the linear increase.

The key property of the maximally informative foraging strategies is that they depend on the 
width of the initial (‘prior’) distribution of food in the environment. We find that changing the 
width of the distribution σ changes the rate at which the evidence that food is elsewhere accumu-
lates (Figure 6A). Adjusting the slope of the drift-diffusion model captures both the change in evi-
dence-accumulation as well as the observed distribution of transition times from local to global search 
(Figure 6B). Furthermore, the slope of the best-fitting drift-diffusion model scaled linearly with σ 
(Figure 6C). These observations suggest that animals could empirically learn the appropriate slope 
for different distributions of food, and in this way perform nearly optimal foraging strategies with 
minimum computational effort. Notably, the distribution of local search duration times produced by 
the chemotaxis model show the opposite dependence on the width of the prior distribution compared 
to the infotaxis model (Figure 6B).

The maximally informative foraging trajectories are affected not only by the width of the prior dis-
tribution but also by odorant characteristics. For example, the diffusivity of odorant molecules affects 
the calculation of the likelihood of food source. Perhaps fortuitously for animals with small neural 
circuits, we found that the changes in diffusivity primarily affected the rate of increase ( )ln[1– ]tp A , but 
the overall dynamics could still be described by the that drift-diffusion model (Figure 6D). The slope 
of the drift-diffusion model increased approximately linearly (Figure 6D) with the spatial extent L of 
the diffusion filter (Vergassola et al., 2007), see also Equation 3 in ‘Materials and methods’. Notably, 
the drift rate depends primarily on the ratio σ/L (Figure 6E–F). These results demonstrate that max-
imally informative foraging trajectories can be approximated by a simple drift-diffusion model across 
a range of behaviorally relevant conditions.

Discussion
In this work we have shown that the exploratory behavior of a small animal, the nematode  
C. elegans, meets the quantitative benchmarks expected for an optimal, maximally informative 
strategy. This analysis formally requires continuous updates to the likelihood of food sources 
based on incoming sensory inputs. At the same time, we find that the resulting maximally informa-
tive foraging strategies can also be implemented with a combination of a random confined walk 
with an internal drift-diffusion variable to encode the transition to a new search strategy. The presence 
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of such transitions illustrates how emergent discrete decisions occur as a result of continuous  
exploration of the environment. Previous studies have shown that drift-diffusion models can pro-
vide a substrate for optimal calculations in two alternative forced-choice tasks (Bogacs et al., 2006). 
Here, we find that these models can also help approximate optimal calculations in cases where 

Figure 6. Drift-diffusion approximates maximally informative search across a range of conditions. (A) The log 
probability that the food is located elsewhere has approximately linear dynamics, resembling a drift-diffusion 
decision variable. The drift rate (slope) decreases with the width of the prior distribution (B) The distribution of local 
search duration times can be approximated by a drift diffusion model for a range of conditions. The chemotaxis 
model predicts an opposite shift in the local search duration times between wide and narrow priors compared to 
the infotaxis predictions. In both panels (A) and (B) red and black curves correspond to wide and narrow priors, 
respectively. (C) The drift rate increases linearly with the width σ of the prior distribution. (D) The drift rate decreases 
linearly with filter width L (E) The drift rate depends primarily on the ratio L/ σ. (F) Normalizing models with different 
filters by their prior distribution widths reveals a common strategy.
DOI: 10.7554/eLife.04220.009
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alternative choices are not imposed externally but emerge as an intrinsic part of behaviors that 
optimize gain over long time scales.

A tentative circuit
The C. elegans neuroanatomy (Gray et al., 2005) suggests that multi-phase foraging strategies 
can be implemented at the neuronal level, even in simple nervous systems. Taking the two-phase 
foraging circuit (Gray et al., 2005) that we analyzed here as an example, one may hypothesize 
that the initial trigger for the start of the search is provided by sensory input, likely through the 
AWC sensory neuron (Figure 7). AWC neurons respond to a decrease in odorant concentration 
(Chalasani et al., 2007). However, these responses are transient (Chalasani et al., 2007) and do 
not last long enough to account for the long duration of local search (∼15 min). Instead, we  
hypothesize that local search is maintained based on the responses of one of the interneurons. 
The gradual change in state of these neurons that receive sensory input, for example the AIB and 
AIZ interneurons, may encode the passage of time since the start of local search. Modulating the 
rate at which the internal state of a neuron changes allows the animal to adjust the duration of 
local search after sensing aspects of the environment such as how food is spatially distributed and 
how far the odorant molecules diffuse from this particular food source. We hypothesize that this 
modulation occurs through neuromodulatory signaling, which is known to be involved in local 
search behavior (Hills et al., 2004). In summary, a neural circuit based on just a few neurons suf-
fices to implement foraging strategies that approximate the maximally informative, but computa-
tionally intensive, decisions.

Infotaxis vs chemotaxis
There are a wide range of possible foraging strategies that animals might follow. These include 
chemotaxis based on local sensory cues, different types of random walks (Bartumeus et al., 2002; 
Humphries et al., 2010; Viswanathan et al., 2011; Humphries et al., 2012), and computationally 
intensive models based on detailed memories of past experiences. This raises the question of 
whether the optimal foraging strategy is constrained not only by the physical environment but also 
by the computational complexity of its implementation (Tishby and Polani, 2011). One approach 
to this solution is provided by the conventional chemotaxis model (Ferree and Lockery, 1999; 
Pierce-Shimomura et al., 1999). A chemotactic behavior can be implemented based on responses 
of just one sensory neuron. However, the resulting search strategies are driven directly by changes 
in the gradient and do not necessarily reflect the typical size of food patches. While infotaxis and 

chemotaxis strategies converge under conditions 
of smoothly varying gradients, this is not so in 
cases where transitions between patches are 
common. In fact, we found that chemotactic trajec-
tories exhibited not only a much weaker depend-
ence on the patch size compared to infotaxis 
trajectories but also predicted the opposite rela-
tionship between patch size and search duration 
(Figure 6B). In addition, we found that worm 
and foraging trajectories were unaffected by 
the overall food concentration within the patch 
(Figure 5B), in agreement with infotaxis but in 
contrast to chemotaxis predictions. The addition 
of interneurons to the circuit, as schematized in 
Figure 7, makes it possible to dissociate the 
change in the gradient from the duration of local 
search. Thus, the modest increase in computational 
cost associated with the addition of interneurons 
allows for more flexible behavior than would be 
seen in a simple chemotaxis strategy.

It has been noted that foraging strategies that 
maximize the mutual information about target 
locations do not always produce the maximal 

Figure 7. A tentative neural model for near-optimal 
foraging. Maximally informative foraging can be 
approximated by a combination of local and global 
search phases. Responses of a sensory neuron initiate 
the start of the local search. The passage of time  
during the local search is encoded in the intracellular 
voltage of an interneuron. Finally, the duration of the 
local search can be modulated by the release of 
neuromodulators.
DOI: 10.7554/eLife.04220.010
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yield. Such situations have been observed in cases where the targets are mobile (Agarwala et al., 
2012). In this case, although the searcher knows precisely where the food is located at a given 
time, it might not be able to get to the food source before it moves again. Animals might coun-
teract this problem with predictive coding, using foraging strategies that maximize information 
about the food source location at a sufficient time in the future (Polani, 2009; Tishby and Polani, 
2011; Bialek, 2013). So long as the parameters of simpler models can be easily learned through 
experience, there are no barriers to implementing such strategies with a few neurons. Indeed, 
including predictive information may take the form of an increased rate of evidence accumulation 
in an infotaxis-like model.

The fact that both infotaxis and drift-diffusion models can account for the properties of foraging 
trajectories does not take away from the stated goal that animal behavior is guided by information 
maximization. After all, the drift-diffusion models are fitted to parameters of infotaxis trajectories. 
These fits dictate how the animals should adjust search times depending on the typical widths of 
food patches in the environment. While the infotaxis model predicts that local search should last 
longer for wider food patches, the chemotaxis model makes the opposite prediction (Figure 6). 
At the same time, even to set parameters of drift-diffusion models, one would need to estimate 
the variance of the food distribution across space. This is quite a feat for such a small animal as  
C. elegans. Further, it might be possible that C. elegans are capable of adjusting their behavior 
based on higher-than-second moments of the probability distribution. Demonstrating this would 
require more fine-scale experiments to control differences in both size and shape of food patches 
from which the animals are removed. If such sensitivities are observed, they would implicate the involve-
ment of more complicated circuits that could be mapped onto a single drift-diffusion model. Finally, it 
is worth noting that the local search of C. elegans exhibits striking similarities to other invertebrates, 
such as crabs (Zeil, 1998), bees (Gould, 1986; Dyer, 1991), and ants (Wehner et al., 2002). In partic-
ular, the search patterns of desert ants that have been displaced on their return to the nest (Wehner 
et al., 2002). When arriving near the presumed location of the nest, animals follow a spiral search 
pattern that is consistent with infotaxis trajectories (Barbieri et al., 2011). Following large displace-
ments, ants have great difficulties finding the nest with local search patterns and transition to a strategy 
that is reminiscent of the global search executed by C. elegans (Wehner, 2003; Wehner et al., 2006). 
The large-scale foraging patterns in ants are difficult to study quantitatively because of the large areas 
involved and a few published foraging trajectories (Wehner et al., 2002). Our results add to these by 
showing that invertebrates can integrate more abstract quantities than spatial position and operate 
directly on the probability that the food (or nest) is located elsewhere. Importantly, the animals do not 
need to perform information-theoretic calculations all of the time; instead they can set parameters of 
the approximating models through learning and experience.

In summary, animals appear to guide their foraging behavior by searching for information. This 
simple behavioral rule is able to account for multiple search strategies, as well as the emergent transi-
tions between them. While seemingly complex, this strategy can be easily implemented in a reduced 
neural system. We anticipate that this principle will prove useful as a general theory of search and 
decision-making in a wide range of contexts.

Materials and methods
Quantification of animal behavior
C. elegans in the L4 larval stage were allowed to grow overnight on an agar plate containing a 100 μl 
circular patch of the E. coli OP50 strain (OD600 = 0.4). For testing, animals were moved to an agar 
observation plate without any food where they were corralled into a 1″ square by a filter paper 
soaked in 200 mM CuSO4, which animals generally avoid. Moving an animal requires them to 
picked up using a metal object. These animals spend roughly 2 min moving forward before initiat-
ing their search. Worm movement was recorded for 30 min at three frames per second, and the 
first 2 min are ignored.

Computation of infotaxis trajectories
Infotaxis trajectories were modeled using a 128 × 128 grid representing position and probability distri-
bution of the food source in the environment. At each step, the anticipated change in entropy was com-
puted taking into account two possibilities: observing or not observing odorant hits. Although the initial 
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descriptions of the model separated odorant detection events according to the number of odorant hits, 
in our setup (absent food source) the computation of those probabilities was numerically unstable. This 
is the reason why we reduce the coding to binary, either ‘no hits’ or ‘a non-zero number of hits’. As such, 
each change in entropy is calculated using the probability to receive a hit or the probability to receive 
zero hits. Computations are halted upon being within one space of the border or after no movement for 
15 time steps. Trajectories are computed as in (Vergassola et al., 2007). The probability of an odor 
source being located at location r0 after observing a trace of odor encounters is given by
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=
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where H is the number of hits observed during the trajectory at time ti. Here, 
0
( )

t
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r
 is the likelihood 

of observing the trace Tt odor encounters from a source located at r0. When a region is visited and the 
source is not found, that region has its probability set to 0. R is the function representing the mean hit 
rate observed at location r if the source is at r0. It has the following form:
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where a is the size of the searcher, ρ  is the particle emission rate, D is the diffusivity of the particles, 
the particles have a finite lifetime τ , and K0 is the modified Bessel function of order 0. The filter width 
L is defined as L = Dτ .

During movement, the expected change in entropy when moving is

( ) ( )[ ] ( ) ( ) ( )0 0 1 1
= – + 1– +j t j t j j jS P S P S S   

      r r r r r rΔ → Δ Δρ ρ
 

where 
0
ρ  represents the probability that 0 detections are made at rj during a timestep and 

1
ρ  rep-

resents the probability that any detections are made. In this cases, the expected number of hits 

( ) ( ) 0 0= ( | )j t j jh P R dr r r r r∫  with the probability of hits following a Poisson law. In other words, 

( )( ) –

1 = 1– (1– )h
tp A eρ .

During search, while a hit results in a change in the probability landscape of ( )0|R r r , no hits will 
update the prior by convolving it with ( )0exp(– | )R r r . The length scale of this filter is calculated by fitting 
it with an exponential function exp(– / )x L  with an adjustable length scale L.

Drift-diffusion model
The decision variable was modeled as an accumulating value with initial value set at −100 to represent 
the log-likelihood that food is elsewhere. Drift and diffusion parameters were extracted from the time 
series of infotaxis trajectories and decisions were simulated using the following equation:

= + .dx Adt cdW  (4)

Here, x is the current evidence in favor of a decision. It grows with mean drift rate A and Gaussian noise 
dW is drawn with standard deviation s. Simulations were ended once the decision variable reached 0.
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