(54) SITE-SPECIFIC RECOMBINATION IN EUKARYOTES AND CONSTRUCTS USEFUL THEREFOR

(75) Inventors: Stephen O’Gorman, San Diego, CA (US); Geoffrey Wahl, San Diego, CA (US)

(73) Assignee: The Salk Institute for Biological Studies, La Jolla, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 11/437,556

(22) Filed: May 19, 2006

(65) Prior Publication Data
US 2006/0212951 Al Sep. 21, 2006

Related U.S. Application Data
(62) Division of application No. 08/919,501, filed on Aug. 28, 1997, now Pat. No. 7,135,608.

(51) Int. Cl.
C12N 15/82 (2006.01)
C12N 15/87 (2006.01)
C12N 15/00 (2006.01)
C07H 21/04 (2006.01)
A01H 5/00 (2006.01)

(52) U.S. Cl. 800/287; 800/278; 800/298; 435/320.1; 536/24.1

(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,477,002 A * 12/1995 Tuttle et al. 800/303

5,925,808 A * 7/1999 Oliver et al. 800/298

FOREIGN PATENT DOCUMENTS
WO WO 92/15694 9/1992

OTHER PUBLICATIONS
* cited by examiner

Primary Examiner—Stuart F. Baum
Assistant Examiner—Li Zheng
(74) Attorney, Agent, or Firm—Foley & Lardner LLP; Stephen E. Reiter

(57) ABSTRACT

The present invention relates to compositions and methods for the generation of recombinant plants by manipulation of chromosomal sequences in plant cells via recombination promoted by recombinases. Nucleic acid constructs are provided in which a germline-specific promoter is operatively associated with a recombinase coding sequence. Methods are provided in which the constructs are introduced into a variety of plant species.

18 Claims, 2 Drawing Sheets
Figure 1

P2Bc

5'P ▶ Neo ▶ β-GAL ▶ 3'P

Pst I

2.8 kb

Pst I

P2Br

5'P ▶ β-GAL ▶ 3'P

Pst I

12 kb

Pst I

Cre
Figure 2
SITE-SPECIFIC RECOMBINATION IN EUKARYOTES AND CONSTRUCTS USEFUL THEREFOR

RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 08/919,501, filed Aug. 28, 1997, now issued as U.S. Pat. No. 7,135,608, the entire contents of which are hereby incorporated by reference herein for all purposes.

FIELD OF THE INVENTION

The present invention relates to methods for manipulating chromosomal sequences in cells by site-specific recombinomation promoted by recombinases. In a particular aspect, the present invention relates to methods for producing embryonic stem cells bearing nucleic acid sequences that have been rearranged by a site-specific recombinase expressed from a construct controlled by a tissue-specific promoter (e.g., a germline specific promoter). In another aspect, the present invention relates to methods for producing embryonic stem cells bearing nucleic acid sequences that have been rearranged by a site-specific recombinase expressed from a construct controlled by a conditional promoter.

BACKGROUND OF THE INVENTION

Site-specific recombinases represent the best method for creating tissue-specific and conditional mutations in animals and plants being employed first to remove the selectable marker to create a functionally wild-type allele, and then to inactivate the allele mosaically in animals and plants by removing some essential component in a tissue-specific or conditional manner (Gu et al. (1994) Science 265:103-106; Kuhn et al. (1995) Science 269:1427-1429). Current protocols for using exciscive site-specific recombinomation to remove selectable markers include transiently transfecting ES cell clones with a recombinase expression vector (Gu et al. (1993) Cell 73:1155-1164), microinjecting fertilized oocytes containing the recombinant allele with a recombinase expression vector (Kitamoto et al. (1996) Biochem Biophys Res Commun 222:742-747; Araki et al. (1995) Proc Natl Acad Sci U.S.A 92:160-164), or breeding animals and plants containing the recombinant allele to animals and plants, respectively, containing a recombinase transgene (Schwenk et al. (1995) Nucleic Acids Res 23:5080-5081; Lewandoski et al. (1997) Curr Biol 7:148-151). Each of these approaches requires an investment of some combination of time, resources, and expertise over that required to generate animals and plants with homologously recombined alleles. The most commonly employed method, the secondary transfection of homolo-

gously recombined ES cell clones with a recombinase expression vector, additionally requires extended culture time that may decrease their potential to enter the germline.

In principle, marker excision would be substantially simplified through the use of ES cells containing recombinomase nucleic acid constructs that were expressed in the germline, but not to an appreciable extent in he ES cells themselves or somatic tissues of animals and plants. The lack of ES cell expression would mean that targeting vectors containing selectable markers flanked by recombinomase target sites could be used to isolate homologous recombinants without fear that the marker would be excised during culture. Robust recombinomase expression in gametes would mean that the marker would be excised in at least some of the progeny of ES cell chimeras. Only a single step would be required to isolate subtle mutations and, if two different recombinomase systems were employed, conditional and tissue-specific alleles could be produced with similar improvements in efficiency. A germline-specific recombinomase nucleic acid construct could also be used to deliver recombinomated target nucleic acid constructs to the early embryo (Lewandoski et al. (1997) Curr Biol 7:148-151), so long as the recombinomated target was not detrimental to the terminal stages of spermatogenesis.

Previous reports have shown that expression of nucleic acid constructs containing the proximal promoter of the mouse protamine 1 (mP1) locus is restricted to haploid spermatids in mature mice (Peschen et al. (1987) Proc Natl Acad Sci U.S.A 84:5316-5319; Behringer et al. (1988) Proc Natl Acad Sci U.S.A 85:2648-2652), although low levels of ectopic expression may occur in some mature tissues (Behringer et al. (1988) Proc Natl Acad Sci U.S.A 85:2648-2652). Inclusion of the mP1 promoter does not guarantee expression in the male germline, however, for although nucleic acid constructs containing the mP1 promoter and the SV40 T-antigen coding sequence were transcribed, the message was not translated at detectable levels in spermatids (Behringer et al. (1988) Proc Natl Acad Sci U.S.A 85:2648-2652).

Accordingly, there is a need in the art for methods to modulate expression of recombinomated target nucleic acid sequences in the early embryo. In addition, there is a need in the art for tissue-specific and conditional recombinomatory tools to create transgenic animals and plants. These and other needs in the art are addressed by the present invention.

BRIEF DESCRIPTION OF THE INVENTION

The present invention meets the need in the art for modulating expression of recombinomated target nucleic acid sequences to the early embryo. The present invention further meets the need in the art for tissue-specific and conditional recombinomatory tools to create transgenic animals and plants. Thus, in accordance with the present invention, it has been discovered that nucleic acid constructs encoding a germline specific promoter operatively associated with a recombinomase coding sequence lead to efficient recombinomation of a target nucleic acid construct in the male germline, but not in other tissues. This suggests that such nucleic acid constructs could be used for the efficient production of embryos bearing conditionally, genetically lethal alleles. It has additionally been discovered that ES cell lines generated from one of these transgenic lines could be used in combination with targeting
vectors that contained loxP-flanked selectable markers to isolate homologous recombinants containing the marker and functional loxP sites.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a schematic of P2Bc and P2Br alleles. The positions of the PCR primers used (5P and 3P) are indicated on the diagrams of the P2Bc and P2Br alleles.

FIG. 2 depicts the targeting of the hoxb-1 locus in ProCre ES cells using a targeting vector that contains a loxP-flanked selectable marker. Top, schematic of the wild-type hoxb-1 locus showing the positions of the two exons (open boxes), the position of a 5′ Nrl site and flanking BamHI restriction endonuclease sites, and PCR primers (triangles) that amplify a 204 bp product from the wild-type allele that includes the Nrl site. Middle, the predicted organization of homologously recombined hoxb-1 allele in which a neomycin cassette (NEO), flanked by loxP sites (L), has been inserted into the Nrl site shown in the top diagram. The insertion creates a novel BamII site and the same PCR primers now amplify a 1600 bp product. Bottom, the predicted structure of the recombined allele shown in the middle panel after Cre-mediated excision of the neomycin cassette to leave a single loxP site in place of the Nrl site of the wild-type allele. Amplification with the same primers now yields a 268 bp product.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there are provided nucleic acid constructs comprising a germline-specific promoter operatively associated with a recombinase coding sequence.

As used herein, the term “promoter” refers to a specific nucleotide sequence recognized by RNA polymerase, the enzyme that initiates RNA synthesis. The promoter sequence is the site at which transcription can be spatially initiated under proper conditions. The recombinase nucleic acid(s), operatively linked to the suitable promoter, is(are) introduced into the cells of a suitable host, wherein expression of the recombinase nucleic acid(s) is(are) controlled by the promoter.

In addition to the above-described germline-specific promoters, tissue-specific promoters specific to plants are also contemplated for use in the practice of the present invention, including, for example, the LAT52 gene promoter from tomato, the LAT52 gene promoter from tomato, the LAT52 gene promoter from tomato Eyal et al. (1995) Plant Cell 7(3):373-384, the pollen-specific promoter of the Brassica S locus glycoprotein gene (Dziedzic et al. (1993) Plant Cell 5(8):855-863), the pollen-specific promoter of the NTP303 gene (Weterings et al. (1995) Plant J 8(1):55-63), and the like. Recombinases contemplated for use in the practice of the present invention include Cre recombinase, FLP recombinase, the R gene product of Zygosphaccharomyces (Onouchi et al. (1995) Mol Gen Genet 247 (6):653-660), and the like.

Presently preferred constructs contemplated for use in the practice of the present invention include ProCre (comprising the protamine 1 gene promoter operatively associated with Cre recombinase), ProFLP (comprising the protamine 1 gene promoter operatively associated with FLP recombinase). ProR (comprising the protamine 1 gene promoter operatively associated with the R gene product of Zygosphaccharomyces), and the like.

In accordance with the present invention, there are provided nucleic acid constructs comprising a conditional promoter or a tissue-specific promoter operatively associated with a recombinase coding sequence.

Promoters contemplated for control of expression of recombinase nucleic acid(s) employed in accordance with this aspect of the present invention include inducible (e.g., minimal CMV promoter, minimal TK promoter, modified MMLV LTR), constitutive (e.g., chicken β-actin promoter, MMLV LTR (non-modified), DHFR), and/or tissue specific promoters.

Conditional promoters contemplated for use in the practice of the present invention comprise transcription regulatory regions that function maximally to promote transcription of mRNA under inducing conditions. Examples of suitable inducible promoters include DNA sequences corresponding to: the E. coli lac operator responsive to IPTG (see Nakamura et al., Cell, 18:1109-1117, 1979); the metallothionein promoter metal-regulatory-elements responsive to heavy-metal (e.g., zinc) induction (see Evans et al., U.S. Pat. No. 4,870,009, the phage T7lac promoter responsive to IPTG (see Studier et al., Meth Enzymol., 185:60-80, 1990; and U.S. Pat. No. 4,952,496), the heat-shock promoter; the TK minimal promoter; the CMV minimal promoter; a synthetic promoter; and the like.

Exemplary constitutive promoters contemplated for use in the practice of the present invention include the CMV promoter, the SV40 promoter, the DHFR promoter, the mouse mammary tumor virus (MMLV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter; elongation factor 1α (EF 1α) promoter, albumin promoter, APO Al promoter, cyclic AMP dependent kinase II (CaMKII) promoter, keratin promoter, CD3 promoter, immunoglobulin light or heavy chain promoters, neurofilament promoter, neuron specific enolase promoter, L7 promoter, CD2 promoter, myosin light chain kinase promoter, HOX gene promoter, thymidine kinase (TK) promoter, RNA Pol II promoter, MYOD promoter, MYFI promoter, phophoglycerokinase (PGK) promoter, Slit promoter, Low Density Lipoprotein (LDL) promoter, chicken β-actin promoter (used in conjunction with cedysone response element) and the like.

As readily understood by those of skill in the art, the term “tissue specific” refers to the substantially exclusive initiation of transcription in the tissue from which a particular promoter, which drives expression of a given gene, is derived (e.g., expressed only in T-cells, endothelial cells, smooth muscle cells, and the like). Exemplary tissue specific promoters contemplated for use in the practice of the present invention include the GH1 promoter, the NSE promoter, the GFAP promoter, neurotransmitter promoters (e.g., tyrosine hydroxylase, TH, choline acetyltransferase, ChAT, and the like), promoters for neurotrophic factors (e.g., nerve growth factor promoter, NF-3, BDNF promoters, and the like), and so on.

In accordance with yet another embodiment of the present invention, there are provided embryonic stem cells containing a nucleic acid construct as described herein. As readily understood by those of skill in the art, the above-described constructs can be introduced into a variety of
animal species such as, for example, mouse, rat, rabbits, swine, ruminants (sheep, goats and cattle), humans, poultry, fish, and the like. Transgenic amphibians, insects, nematodes, and the like, are also contemplated. Members of the plant kingdom, such as, for example, transgenic mono- and dicotyle-Donous species, including important crop plants, i.e., wheat, rice, maize, soybean, potato, cotton, alfalfa and the like, are also contemplated.

For example, pluripotent ES cells can be derived from early preimplantation embryos, preferably the ovaries are harvested between the eight-cell and blastocyst stages. ES cells are maintained in culture long enough to permit integration of the promoter-recombinase nucleic acid construct(s). The cells are then either injected into a host blastocyst, i.e., the blastocoeel of the host blastocyst, or cocultured with eight-cell to morula-stage ova, i.e., zona-free morula, so that transfected ES cells are preferentially incorporated into the inner cell mass of the developing embryo. With blastocyst injection, transgenic offspring are termed “chimeric,” as some of their cells are derived from the host blastocyst and some transfected ES cells. The host embryos are transferred into intermediate hosts or surrogate females for continuous development.

The transformation procedure for plants usually relies on the transfer of a transgene carrying a particular promoter construct via the soil bacterium Agrobacterium tumefaciens. Transformation vectors for this procedure are derived from the T-DNA of A. tumefaciens, and transgenes are stably incorporated into the nuclear genome. The activity of the transgenes can then be monitored in the regenerant plants under different conditions. In this way, many promoter elements that are involved in complex regulatory pathways such as light responsiveness or tissue specificity have been defined.

Alternatively, direct (i.e., vectorless) gene transfer systems are also contemplated including chemical methods, electroporation, microinjection, biolistics, and the like. Protoplasts isolated from the plants can be obtained by treatment with cell wall degrading enzymes-DNA can be introduced into plant protoplasts by a number of physical techniques including electroporation and polyethylene glycol treatment in the presence of MgCl₂. The method of choice for rapid promoter analyses in plants is the biolistic method. This technique involves the delivery of the particular DNA construct into plant cells by microprojectiles, i.e., nucleic acid(s) coated or precipitated by tungsten or gold. This method is not limited to any particular plant species or tissue type. Preferably, this method would allow quantitative analysis of transformation if appropriate selectable markers are included.

In a preferred embodiment, the genome of embryonic stem cells according to the invention comprises a transcriptionally active selectable marker flanked by two recombination target sites. It is especially preferred that the recombine encoded by the recombinase coding sequence operatively associated with a germline-specific promoter is selective for the recombination target sites flanking said selectable marker.

Optionally, embryonic stem cells according to the invention may further comprise one or more of:

- a nucleic acid fragment flanked by two recombination target sites, wherein said recombination target sites are different than the recombination target sites which flank said selectable marker,
- a nucleic acid construct comprising a conditional promoter operatively associated with a recombinase coding sequence,
- a second nucleic acid construct comprising a tissue-specific promoter operatively associated with a second recombinase coding sequence, or the like. Preferably, the second recombinase coding sequence will be different than the first recombinase coding sequence.

The ability to select and maintain nucleic acid constructs in the host cell is an important aspect of an expression system. The most important type of selectable marker incorporated in the nucleic acid construct is an antibiotic resistance element allowing selection with ampicillin, kanamycin, neomycin, tetracycline, hygromycin, puromycin, blastophylin, and the like. Other approaches employ specially constructed host cells which require the selectable marker for survival. Such selectable markers include the valine tRNA synthetase, val S, the single-stranded DNA binding protein, ssh, thymidine kinase, or the like. Alternatively, naturally occurring partition systems that maintain copy number and select against plasmid loss is also contemplated. An example is the incorporation of the parB locus. Other selectable markers include HPRT and the like.

Selectable markers specific for plants include, the gus A (uid A), the bar gene, phosphinothricin and the like.

In accordance with still another embodiment of the present invention, there are provided methods for excision of the transcriptionally active selectable marker from the above-described embryonic stem cells, said method comprising:

- passing the genome derived from said embryonic stem cells through gametogenesis (i.e., spermatogenesis or oogenesis).

Excision of marker as contemplated herein can cause a variety of end results, e.g., deletion of the marker or a nucleic acid sequence, gain of function or loss of function, replacement of function, and the like, as well as modulation of any one or more of these results.

Functions which are contemplated to be manipulated include regulating body size and growth rate, including recombining gene constructs which contain various growth hormone gene sequences. Other productivity traits that are targets include altering the properties or proportions of caseins, lactose, or butterfat in milk, increased resistance to viral and bacterial diseases (i.e., “constitutive immunity” or germ-line transmission of specific, recombinant antibody genes), more efficient wool production, and the like. Other functions which are contemplated to be modulated include development of lines of transgenic animals and plants for use in directing expression of transgenes encoding biologically active human proteins.

Agronomic traits which are contemplated to be modulated by use of the present invention include tolerance to biotic and abiotic stresses, increased resistance to herbicides, pest damage, and viral, bacterial, and fungal diseases, improvement of crop quality (i.e., increase in nutritional value of food and feed), reduction of post-harvest losses, improvement of suitability and enlargement of the spectrum for processing (i.e., altered quantity and composition of endogenous properties, production of new compounds of plant or non-plant origin such as biopolymers or pharmaceutical substances).

In accordance with a still further embodiment of the present invention, there are provided methods for the production of recombinant alleles, said method comprising:

- introducing a nucleic acid fragment flanked by at least two recombination target sites into embryonic stem cells as described herein, and
- passing the genome derived from said embryonic stem cells through gametogenesis.

As readily recognized by those of skill in the art, nucleic acid fragments can be introduced into ES cells by a variety of techniques, e.g., by homologous recombination, random insertion, retroviral insertion, site-specific-mediated recombination, and the like.
Nucleic acid fragments contemplated for use herein include fragments containing an essential portion of a gene of interest. In accordance with yet another embodiment of the present invention, there are provided methods for the production of recombinant alleles, said method comprising:

introducing at least one recombinant responsive construct into embryonic stem cells as described herein, wherein said construct(s) comprise(s) a nucleic acid fragment and a selectable marker, wherein said selectable marker is flanked by a first pair of recombination target sites, and wherein said nucleic acid fragment is flanked by a second pair of recombination target sites,

passaging the genome derived from said embryonic stem cells through gametogenesis.

In a presently preferred aspect, this first pair of recombination target sites is recognized by a recombinase which is expressed under the control of a germline-specific promoter and said second pair of recombination target sites is recognized by a recombinase which is expressed under the control of a conditional promoter or a tissue specific promoter.

Optionally, the embryonic stem cells employed herein can further comprise a second nucleic acid construct selected from constructs comprising a conditional promoter operatively associated with a recombinase coding sequence, a construct comprising a tissue-specific promoter operatively associated with a recombinase coding sequence, or a construct comprising a tissue-specific promoter operatively associated with a recombinase coding sequence, the like.

In accordance with still another embodiment of the present invention, there are provided methods for the conditional assembly of functional genes(s) for expression in eukaryotic cells by recombination of individual inactive gene segments from one or more gene(s) of interest, wherein each of said segments contains at least one recombination target site, and wherein at least one of said segments contains at least two recombination target sites, said method comprising:

introducing said individual inactive gene segments into an embryonic stem cell as described herein, thereby providing a DNA which encodes a functional gene of interest, the expression product of which is biologically active, upon passage of the genome derived from said stem cells through gametogenesis.

For assembly of functional genes from inactive gene segments, see, for example, U.S. Pat. No. 5,654,182, incorporated herein by reference in its entirety. In accordance with a still further embodiment of the present invention, there are provided methods for the generation of recombinant livestock, said method comprising:

combining embryonic stem cells that include nucleic acid construct according to the invention with host pluripotent ES cells derived from early preimplantation embryos, and introducing these combined embryos into a host female and allowing the derived embryos to come to term.

In accordance with yet another embodiment of the present invention, there are provided methods for the generation of recombinant plants, said method comprising transforming plant zygotes with nucleic acid constructs according to the invention and allowing the zygote to develop.

The objective of the current work with ProCre nucleic acid constructs was to determine the potential of germline-specific promoters to implement efficient approaches utilizing site-specific recombinases to generate an array of sophisticated mutations in mammals and plants. The data shows that it is possible to create recombinant nucleic acid constructs that are expressed at high levels in the germ line but not to a functionally significant extent in either ES cells or embryonic or adult somatic tissues. Homologous recombinants with a selectable marker can be isolated in ES cells that contain promoter-recombinase nucleic acid constructs. Transgenic animals and plants bearing the promoter-recombinase nucleic acid constructs and a target allele transmit the recombinated target to their progeny at high frequencies. These results establish the principle that mammals and plants containing loci that have been homologously recombinated and then subsequently site-specifically recombined can be generated simply by using ES cells with a suitable recombinase nucleic acid constructs for the initial targeting. By this mechanism, alleles containing a single recombinase target site and a mutation of interest can be produced in the progeny of ES cell chimera without any investment of time, expertise, or resources over that required to create an allele that still contains a selectable marker. The paradigm has obvious utility in the production of subtle and conditional mutations that require generation of alleles with minimal structural alterations. Because the presence and transcriptional activity of selectable markers can contribute to phenotypes in an unanticipated and unwanted manner (Fiering et al. (1995) Genes Dev 9:2205-2213; Olson et al. (1996) Cell 85:14), the approach will also be useful for generating null alleles.

Cre-mediated recombination proved to be highly testis-specific in ProCre mice. It is clear that the nucleic acid constructs are not expressed in the inner cell mass or in other early embryonic tissues. Cells from pre-implantation embryos intermingle extensively and the embryo as a whole is derived from a small number of cells (Bedington et al. (1989) Development 106: 37-46; Soriano and Jaenisch (1986) Cell 46:19-29). If ProCre nucleic acid constructs recombined target sequences during preimplantation stages, at least a few percent of the cells in many tissues would contain the P2R allele and Southern and PCR analyses showed that this was not the case. The ectopic Cre activity seen in some ProCre strains probably resulted from low levels of recombinase expression in later embryos or mature tissues, a finding consistent with the expression patterns of other mP1-driven nucleic acid constructs. Northern analyses have failed to reveal the expression of mP1-containing nucleic acid constructs in a variety of mature tissues (Peschon et al. (1987) Proc Natl Acad Sci USA 84:5316-5319; Behringer et al. (1988) Proc Natl Acad Sci USA 85:2648-2652; Peschon et al. (1989) Ann NY Acad Sci 564:186-197; Zambrowicz et al. (1993) Proc Natl Acad Sci USA 90:5071-5075), but nucleic acid constructs containing the mP1 promoter and the SV40 T-antigen led to the consistent development of tumors of the renal bone and right cardiac atrium (Behringer et al. (1988) Proc Natl Acad Sci USA 85:2648-2652).

PCR assays represent a very sensitive assay for whether sufficient levels of Cre protein were produced to effect recom-
The invention will now be described in greater detail by reference to the following non-limiting examples.

EXAMPLE 1

Mammalian DNA Constructs

A 652 bp fragment of the mPl promoter (SEQ ID NO:1; Peschon et al. (1989) *Annals of the New York Academy of Sciences* 533:186-197) was isolated by PCR using PCR primers (SEQ ID NOs:2 and 3) genomic DNA from CCF ES cells (Robertson et al. (1986) *Nature* 323:445-448) as a template. This fragment was fused to a Cre coding sequence (SEQ ID NO:4) modified to contain a consensus translation start site (Kozak (1986) *Cell* 44:283-292), 11 codons for a human c-myc epitope (Evan et al. (1985) *Mol Cell Biol* 5:3610-3616), 7 codons for a minimal SV40 nuclear localization signal (Kalderon et al. (1984) *Cell* 39:499-509) and the polyadenylation signal from pIC-Cre in the plasmid pOG304M (SEQ ID NO:5). The Cre expression plasmid pOG231 was prepared by fusing a Cre coding sequence modified from pIC-Cre (Gu et al. (1995) *Cell* 73:1155-1164), and containing the same translation start and nuclear localization signal, to the synthetic intron and CMV promoter of pOG44 (O’Gorman et al. (1991) *Science* 251:1351-1355).

A plasmid, pOG277 (SEQ ID NO:7), containing a loxp-flanked neomycin cassette was prepared by inserting a wild-type loxp site (SEQ ID NO:8; Hoeus et al. (1982) *Proc Natl Acad Sci USA* 79:3398-402) into pBSKS (Stratagene) and then cloning the neomycin expression cassette from pMCIneo-polyA (Thomas et al. (1987) *Cell* 51:503-512) between interetections of this loxp site. The hoxb-1 targeting construct consisted of the PGK-TK cassette from pPGTV (Yuh-Bulewicz et al. (1991) *Cell* 65:1153-63), and 1.4 kb and 10.2 kb of sequences 5’ and 3’ to an Nru I site 800 bp 5’ to the hoxb-1 transcriptional start site isolated from a 129 strain genomic library (Stratagene). The loxp-flanked neo cassette from pOG277 was inserted into the Nru site. The pOG277 neomycin cassette and a β-gal sequence was inserted into the first exon of the large subunit of RNA polymerase II (R2P) (Ahearn et al. (1987) *J. Biol. Chem.* 262:10695-10705) to create the P2Be allele (FIG. 1). Cre-mediated recombination of the P2Be allele results in the deletion of the neomycin cassette (Neo) of P2Be that is flanked by two loxp sites, leaving a single loxp site and fusing the B-Gal coding sequence to the initial codons of the RNA polymerase II coding sequence. Recombination increases the size of a Pst I fragment recognized by the RP2 probe, which is external to the targeting vector used, indicated by the shaded box below each allele.

EXAMPLE 2

Production of Transgenic Mice

Fertilized oocytes obtained from matings of 129/SvJae (Simpson et al. (1997) *Nat Genet* 16:19-27) and BALB/c X C57BL/6 J F1 mice were used for pronuclear injections of (the Protamine-Cre fusion gene from pOG304M according to standard protocols (Hogan et al. Manipulating the Mouse Embryo: The Manual, Coldspring Harbor Press (1994), pg. 497). Production of ES cells and homologous recombinants: Heterozygous ProCre 129/SvJae males were mated to 129/SvEmm+ /- females (Simpson et al. (1997) *Nat Genet* 16:19-27) to produce blastocysts that were cultured according to standard protocols (Robertson (1987) Teratocarcinoma and embryonic stem cells, a practical approach, eds. E. J.
Robertson (IRL Press), pp. 71-112). The sex (King et al. (1994) Genomics 24:159-68) and ProCre status of each line were determined by PCR assays. Molecular analyses: Tail biopsy genomic DNA was used for hybridization assays or PCR assays to identify ProCre and P2Bc/c mice. PCR reactions for the detection of ectopic Cre activity used 100 ng of genomic DNA as a template to amplify a P2Br-specific product using a 5' primer from the RP2 promoter and a 3' primer from the β-GAL coding sequence (FIG. 1). Thirty cycles of amplification were done in a total volume of 100 μl using 300 ng of each primer, 3 mM MgCl2, 1.5 units of Taq polymerase, and an annealing temperature of 60°C. Southern blots of reaction products were hybridized with a probe specific for the P2Br reaction product.

EXAMPLE 3

ProCre Nucleic Acid Constructs Efficiently Recombine Target Alleles

A total of nine founder animals with ProCre nucleic acid constructs were obtained from injections of a Protamine-Cre fusion gene. Two lines were derived from injections of 129 SvJae (Simpson et al. (1997) Nat Genet 16:19-27) embryos, and seven from injections of C57B1/6J embryos. The 129/SvJae lines and three selected hybrid lines were examined in detail. To determine whether ProCre nucleic acid constructs would efficiently recombine a target allele, males were generated that contained a ProCre nucleic acid construct and a target for Cre-mediated recombination. This “P2Br” (PolII, β-Gal, conditional) target (FIG. 1) was created using homologous recombination in ES cells to insert a loxP-flanked neomycin cassette and a β-GAL coding sequence into the first exon of the cdc2 homolog coding for the large subunit of RNA polymerase II. Cre-mediated recombination of the loxP sites was expected to delete the intercalated sequences, creating “P2Br” allele (PolII, β-Gal, recombined).

These males were mated to wild-type females and the resulting progeny were examined by Southern blotting to determine if they inherited the P2Br or the P2Br allele, and to additionally determine the segregation pattern of ProCre nucleic acid constructs anti P2Br alleles. Southern blot of Pst I digested tail biopsy DNA’s from a +/P2Br, +/ProCre male (sire) and four of his progeny by a wild-type female probed with a RP2 probe (top) and then reprobed with a Cre probe (bottom). The large majority of transmitted target alleles were Cre-recombined P2Br alleles (Table 1). ProCre nucleic acid constructs and recombinant target alleles segregated independently in the first generation; approximately 50% of mice that inherited a P2Br allele also inherited their male parent’s ProCre nucleic acid construct. All P2Br mutant alleles in the progeny were P2Br, and some progeny inherit a P2Br allele without inheriting ProCre nucleic acid construct and is homozygous wild-type at the RP2 locus. These data establish that ProCre nucleic acid constructs efficiently recombine the P2Br allele in the male germline and that the recombinant P2Br alleles and ProCre nucleic acid constructs segregate in the first generation. Because significantly more than 25% of the progeny inherited recombinated target alleles, recombination either occurred during diploid stages of spermatogenesis or Cre generated during haploid stages of spermatogenesis was distributed among spermatids through cytoplasmic bridges (Bram et al. (1989) Nature 337:373-376), effecting recombination in spermatids that did not themselves contain a ProCre nucleic acid construct.

The progeny of matings between ProCre males and +/P2Bc females were also examined to determine if male gametes from ProCre mice delivered through Cre to zygotes to effect Cre-mediated recombination of a target sequence. Of 96 progeny examined by Southern blotting, none contained a Cre-recombined P2Br allele.

It has also been discovered that a loxP-flanked neo cassette in the glutamate receptor P6 subunit locus is efficiently recombined by ProCre nucleic acid constructs in mice.

EXAMPLE 4

ProCre Nucleic Acid Construct Expression is Highly Tissue-Specific

Genomic DNAs from ten different tissues of five-to-seven-week old males that contained both a ProCre nucleic acid construct and a P2Br target allele were analyzed in Southern blots. Southern blots were prepared of Pst I digested DNA from testes (T) and one other tissue (K, kidney, B, brain; S, spleen) of males heterozygous for one of four ProCre nucleic acid constructs and the P2Br allele. Testis DNA from each male shows a P2Br allele signal, in addition to those generated by the wild-type RP2 (WT) and P2Br alleles. Other tissues show only the WT and P2Br signals. Only the testis samples showed signals indicating Cre-mediated recombination of the target. The intensity of the P2Br signal relative to that of the wild-type allele ranged from 10% to 22% for different ProCre strains and did not correlate with the ProCre nucleic acid construct copy number. The copy number of ProCre nucleic acid constructs varied among lines showing similar levels of recombination in testis. For example, restriction patterns and densitometric analyses showed that line 58 contained a single copy of the ProCre nucleic acid construct, yet showed virtually the same testis recombination signal as line containing more than 100 copies. This variability is similar to results obtained with other miP promoter-driven nucleic acid constructs (Peschon et al. (1987) Proc Natl Acad Sci USA 84:5316-5319; Zambrowicz et al. (1993) Proc Natl Acad Sci USA 90:5071-5075).

As a more sensitive measure of ectopic recombination, PCR amplifications were performed on the same samples. The amplification primers were expected to produce a 325 bp product from the recombinated target and a 1.4 kb fragment from the unrecombined allele (FIG. 1). The assay was expected to measure the cumulative level of recombination, for any P2Br alleles formed during transient expression of Cre during development would be preserved and perhaps amplified in descendant cells. Low levels of ectopic recombination product were observed in some tissues of all ProCre lines except for one. A Southern blot of PCR amplification products of the P2Br allele utilized tissues from a male heterozygous for the ProCre nucleic acid construct and the P2Br allele. DNA from 10 different tissues was amplified using primers and conditions that produced a 350 bp product from the recombinated, P2Br allele. Each lane contains 10% of the reactions, except for the testis reactions which were diluted 500 (15), 250 (12) and 100 (11) fold prior to loading, and a liver reconstruction control (C), which was diluted 1:100 before loading. The highest level of ectopic activity was observed in cardiac ventricular muscle of mice; in these samples the ectopic signal was more than 100 fold lower than that observed in testis. Three strains showed much lower levels of recombination in brain tissue, and strain 75 additionally showed ectopic activity in spleen. Despite the diffi-
cult of quantifying PCR results, these data clearly indicate that ectopic activity occurred at very low levels in most tissues of most ProCre lines.

EXAMPLE 5

Isolation of Homologously Recombined ProCre ES Cell Clones Using Targeting Vectors with a loxp-P-Flanked Selectable Marker

Four male 4/ProCre ES cell lines were established from 129/Sv strain ProCre transgenic mice. In preliminary experiments, passage 5 cells from one of these lines (PC3) were used to generate three male chimeras with between 50 and 95% coat color chimerism. In matings with C57BL/6 females, two of these male chimeras have sired a total of 11 pups, all bearing the Agouti coat color signifying germine transmission of the ES cell genome, and 6 of 9 pups genotyped additionally contained the line 70 ProCre nuclear acid construct. The frequency of germine transmission has not yet been determined, nor has it been determined whether competency for germine transmission will persist in homologously recombined ProCre ES cells at later passages.

To determine if homologously recombined ProCre ES cell clones could be isolated using targeting vectors that contained a loxp-P-flanked selectable marker, two transfections were done using variants of a targeting vector in which a loxp-P-flanked neomycin cassette was inserted into an Nru I site in the hoxb-1 locus promoter (FIG. 2). A Southern blot of BamHI-digested genomic DNAs were harvested from a 96-well plate from 10 doubly-selected ES cell clones and hybridized with a probe (shown in FIG. 2) which is external to the targeting construct. All samples show the 7.5 kb band from the wild-type allele and four clones additionally show the 6 kb band predicted to result from homologous recombination. In these transfections, 12 of 62 (19%) PC3- and 10 of 56 (18%) PC6's-derived clones that were ganciclovir and G418-resistant (Mansour et al. (1988) Nature 326:346-352) were found to be homologously recombined. In two parallel transfections of CCE cells (Robertson et al. (1986) Nature 323:445-8) with the same vectors, 32 of 93 (34%) and 15 of 132 (11%) clones were homologously recombined. The total numbers of G418-resistant clones recovered from ProCre ES cell transfections were reduced relative to the parallel CCE transfections. This may be attributable to both Cre-mediated excision of the neomycin cassette and to the fact that the transfections were done under electroporation conditions optimized for CCE cells.

Because it was formally possible that the homologously recombined clones contained inactive loxp sites, five homologously recombined PC3 ES cell clones and the parental PC3 cell line using the primers shown in FIG. 2 were either mock transfected or transiently transfected with the pOG231 Cre expression vector. For the transient transfection assay, DNA was harvested 48 hours after transfection and used in PCR assays to assess whether the loxp sites in these recombinant clones could be recombined by Cre. In cases a clear recombination signal was observed in the pOG231 transfection sample. The recombinant clones and parental cell lines show the 204 bp amplification product of the wild-type allele, and the recombinant clones additionally show, a 1600 bp product resulting from amplification across the neo-cassette and a non-specific 1100 bp amplification product (NS). The pOG231-transfected recombinant clones show an additional 268 bp product signaling the Cre-mediated excision of the neo-cassette from the recombinant alleles of some cells. Experiments were also done to assess the stability of the loxp-P-flanked neo cassette in ProCre ES cells. Five recombinant clones were grown in the presence of G418 for two weeks, and then aliquots of each were grown either in the presence or absence of G418 for a further 10 days. PCR assays were performed to determine if Cre-recombined alleles were present in any of these samples and none was observed in the mock transfected controls. These data suggest that there is not enough Cre activity to significantly influence either the ability to isolate recombined clones or the stability of the selectable markers in those clones, establishing that the loxp sites in these clones were functional.

To determine if there was any detectable Cre activity in ProCre ES cells, aliquots of two lines (PC3 and PC5) were transiently transfected with the targeting vector used to create the P2Bc allele. DNA was recovered 48 hours after transfection and used for PCR amplifications of the P2Bc plasmid molecules that would be generated by extrachromosomal Cre-mediated recombination. Small amounts of recombination product were seen in both ProCre ES cell transfections, and none was observed in parallel samples of CCE ES cells. This shows that the ProCre ES cell lines express sufficient Cre to recombine some extrachromosomal targets when the latter are present at high copy numbers.

EXAMPLE 6

Plant DNA Constructs

To define sequences in the LAT 52 and LAT59 promoters involved in expression in pollen, proximal promoters were constructed employing a series of linker substitution mutants using the particle bombardment system (Klein et al. (1987) Nature 327:70-73; Twell et al. 1998b) Plant Physiol 91:1270-1274). These experiments were performed by obombarding the test plasmids (luciferase [LUC]-recombinase fusions) with reference plasmids (∝-glucuronidase [GUS] fusions). The latter served as a control for bombardment viability and allowed comparisons to be made between independent bombardments.

The context of the −100 promoter in LAT52 and the −115 promoter in LAT59 was chosen because these promoters appeared to be the minimal regions that still conferred high levels (25% relative to the available full-length promoter) of pollen-specific expression (Twell et al. (1991) Gen Dev 5:496-507). These minimal promoters were then fused to the Cre coding sequence operatively linked to the b-gluc gene (Ow et al. (1986) Science 234:856-858) coding region, and the resulting plasmids served as a basis for creating the nucleic acid constructs. The LAT52 linker substitutions were performed in p52LUC, which contain entire LAT52 5′ untranslated region (5′ UTR). A series of six 9- to 10-bp-long linker substitutions were made in p52LUC, spanning the region −84 to −29 (52LS1 to 52LS6).

EXAMPLE 7

Tissue Specificity in Plants

The results obtained by transient expression in pollen and in transgenic plants provided information on the effect of the various constructs on expression in pollen but not on their effect on tissue specificity. A tobacco cell culture, TXD (maintained as described by Howard et al. (1992) Cell 68:109-118), was, therefore, added as an additional component of the transient assay system. The TXD cell culture was initiated from tobacco mesophyll cells and therefore represents somatic tissue, as opposed to the gametophytic tissue
representing by pollen. Cells in culture were chosen, rather than intact tissue, as the somatic tissue source because such cells superficially resemble pollen in that they can be spread out as a monolayer on a plate before bombardment.

In this experiment, translation fusions between the luc coding region and either the CaMV 35S promoter drove strong expression in cell culture but negligible expression in pollen, whereas the LAT52 promoter showed the opposite pattern of strong activity in pollen and negligible activity in cell culture. Thus, the transient assay system mimics the expression pattern observed for these promoters in transgenic plants (Twell et al. 1991) Genes Dev 5:496-507). This differential expression provided us with a tool which to address tissue specificity.

EXAMPLE 8

Plant Transformation and Analysis of Transgenic Plants

Constructs cloned into pBin19 were introduced into tomatoes (Lycopersicon esculentum cv VE36) by Agrobacterium tumefaciens LBA4404 as previously described (McCormick 1991b Transformation of tomato with Agrobacterium tumefaciens, in Plant Tissue Culture Manual, K. Linsay, Ed B6:1-9). At least 20 independent transformants were obtained for each construct.

For ß-glucoronidase (GUS) assays, 5 to 20 μL of pollen, pooled from several flowers of the same plant, was ground directly in Eppendorf tubes in 50 to 100 μL of GUS extraction buffer (Jefferson et al. (1987) EMBO 6:3901-3901) using a Teflon tipped homogenizer driven by a drill. Expression in pollen was measured by fluorometrically assaying GUS activity in supernatants of pollen extracts using 2 mM 4-methylumbelliferyl ß-D-glucuronide (Sigma) as substrate (Jefferson et al. 1987) EMBO 6:3901-3901). GUS activity was corrected for variation in total protein content using a bichromonic acid protein assay kit (Pierce, Rockford, Ill.).

Expression in leaves, flowers, stems, roots, and seed was tested histochemically by staining with 5-bromo-4-chloro-3-indolyl ß-D-glucuronide (Molecular Probes, Eugene, Ore.) as described previously (Jefferson et al. 1987) EMBO 6:3901-3907). Expression in leaves was also analyzed fluorometrically as given previously.

EXAMPLE 9

Transient Transformation of Tobacco Pollen and Cell Culture

Pollen spread out as a monolayer was bombarded essentially as previously described (Twell et al. 1991) Genes Dev 5:496-507), except that gold was substituted for tungsten and only 1 μg of test plasmid used and per plate. TXD cell culture (maintained as described by Howard et al. (1992) Cell 68:109-118) was spread out similarly as a monolayer (1 mL of a 50-μL stationary culture per plate) and bombarded as previously described. Between six and 12 independent bombardments were performed for each construct. In each experiment, the test plasmid was co-bombarded with a reference plasmid: pBl223 (Clontech, Palo Alto, Calif.) was used for assays of all constructs in tobacco cell culture; PLAT5-12 (Twell et al. 1990) Development 109:705-713) for assays of LAT52 and LAT56 constructs in tobacco pollen; PLAT5-16 (Twell et al. 1990) Development 109:705-713) for assays of LAT59 constructs in tobacco pollen. Processing of the tissue after 15 to 16 hr and analysis of GUS and LUC activity were as described previously (Twell et al. (1991) Genes Dev 5:496-507). Transient expression was reported as "relative LUC activity," which represents the ratio between the test (LUC) and the reference (GUS) plasmids.

While the invention has been described in detail with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which is described and claimed.
cgaaccaggt ggtgctccct gctctgagcc agctcogggc caagcagca cc 652

<210> SEQ ID NO 2
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<600> SEQUENCE: 2

gtctagtaat gtcacaaccc tcotcagat 29

<210> SEQ ID NO 3
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<600> SEQUENCE: 3

ctctgagcga cgtcogggccc aagacagc ac 31

<210> SEQ ID NO 4
<211> LENGTH: 1022
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic nucleotide sequence

<600> SEQUENCE: 4

atgagcagaa atgcttttgc tcgagccagct tcgcagcggc caagagaaacaagaggtgt 60
tccaatctacctcagcata cccacattttg cctgcattac cgtgcagatgc aacagagttc 120
ggcgtcgcga aacaggtgat ggagatgtcc agggatgtcc aggcgttgatt tacgcacacc 180
tggagataag tcctgtggtct tgtcgcgtggtc tgtgcgggtctgc gttgcagagttc 240
aatgctgatttc cggcagaaactatc gaggctgctct tgtgctgt gctgcgtggtc 300
gtgcggtgc aaaaaattac cagcactact gccagcactgt aacagcagtt gtgcgtggtc 360
cgggtcgcg aacagcagtt gacgacact cgtgctcgtct cggctgctcgtc cggctgctcgtc 420
aagcctagct aagctgctacc aacgcctct tggctgctc cggctgctcgtc 480
tgcgcggtgctc gcgtgggtct cggctgctcgtc aacgcctct tggctgctc 540
cattcctggtt gatgggttat aacacgctgt tccgctatgc cgaagacgagt aggcgtggtggt 600
ttcagatcat cttcgagcct gacgctggtg atgggttat aacacgctgt aacacgctgt 660
cgtgcgtggt cccagctcag cttggtttcgt gggtgttctc aacagcagtt cttggtttcgt 720
agatggtctgc tcggctggtc gccctgggtc tcgtcgcgtgctggtctgcgtggtc 780
ctccacacatcgctcctggtgctggtc gccctgggtc tcgtcgcgtgctggtctgcgtggtc 840
aaggagtttc cggcctgctc cttggtttcgt gggtgttctc aacagcagtt cttggtttcgt 900
gatcggcgtc cttggtttcgt gggtgttctc aacagcagtt cttggtttcgt 960
tgcggtgtgt tgcagcactgc aacacgctgt aacacgctgt 1020
tgcggtgtgt tgcagcactgc aacacgctgt aacacgctgt 1020

<210> SEQ ID NO 5
<211> LENGTH: 2293
-continued

US 7,566,814 B2

19

<312> TYPE: DNA
<313> ORGANISM: Artificial Sequence
<314> FEATURE:
<315> OTHER INFORMATION: Description of Artificial Sequence: Synthetic nucleotide sequence

<400> SEQUENCE: 5

gtctgcaag gctcaaccc ttcctcaagtc caaactctg tcgctatca tgggtgctcc 60
atattcct gcagctcgctg atggggtctct aatggctttac tagagccocac cccocctgaa 120
ctctgagacc cttctgattt gttctgtcag tgcctcactgg gccggtgctgt aatattttaa 180
aagctcagct tccctacagca gatttctgcg agcgctgctg tcagagcactt tttcaagctt 240
acaactccat ggcgttgttt ccccaactctg ccctggctctg ggtacctcat cagacactag 300
dcttctagacga gtgggtggcc aactaaacc taatgcgtgct gactaactga acactaagct 360
gggtgccat cttctgctctt cctctgtggtt actctagcagc ctctagcgctg caaactgctg 420
ccctccctct ctctgctatcc atttgccagc ggtacagcgt cttctacgccc atggctctgtg 480
agccctctgt cccctttgtgg tcaacctatc ctaggggcttc gatgtatata cagacatag 540
agccctctgt gcctgagacc cccacccagc aaccctacac tggctcagggag tcgctctggt 600
ccgacccagc ggtgttcctct gcctgagccc agcgctccgc caagccagac cccggtaccg 660
tgcgctcagga ggtatcttcg gggagggcgt gggagccccc gggagggacgc gggacgctgg 720
ccacttact ggcctctagc caaacatggc ctgcttacatc ggtctgagcc aagctcagct 780
agctgagcc gaaacctcgag gcagctggtca ggtggggtgct gtgggtcggct gcgggtcacg 840
gggtatgcgc ctggtggctg gggccctgct gcggctgtgg tgaatcctag aattaccagg 900
aatgggtttccc ccggagaggc gcagctgcct cctatattct cttatattct cagggccgcg 960
ggtgcgctg ccagcaacat cccacattgt cggccgctct ccagctagtct cccagctcgtt 1020
cggggcgtg acgaccaacc tgcgttcttg ggtctggggg gggattccga tccctctgtg 1080
ccgagaaacc tggagtgggt gcggttagctt ggggctggct gcgggtcggag gggattcctg 1140
tcgccctcgt tcggctcgtg atgggtataa agagcatcgt gttttgttag gggagttttct 1200
cattcctgtt ggtgttcgg taacagccgt aacagctgct gcgggtcctg gcgggttcgg 1260
ctcaggtatat ctcaggtctg gggctggcga gaaattttct gcagcatggt ggggactggg 1320
cgtgcgcgt tagcgtctagc tggcctgctg gggctgcctg gcgggtcact cgggtgccgg 1380
agctgcctgg ttcctccggt gcgggttcgg atgcctgctg gtcctcctgtt gcccggcggg 1440
tcaggagaggt tcggctgctg gggagctcgg cgccagcagc gatacctag cgtggcctg 1500
maggatatttt ctggcagcct ccctggtatc gttctccctt ctcagcctgt ttcagccttg 1560
cttcgctggcac ggtcctgctg caggttcctg tgcgttggag cggcgcgttg cccagctgtg 1620
tgcggttctc taatacgact atatcagagc tgggtggcctgc ttggtcttct gcgggttcgg 1680
tgagctatgc gtcgaatcgg ctgataggt gggctggctg ttttgcggaa ggtcgtttttc 1740
ggcggctag cttccgcgtt ctggctggct gcgggttttg ggggactgct cgggttctgctg 1800
ggacggatg ttctcaatcag cgggctggct ggtgcgtct ggtgtgctg 1860
ggcggctag cttccgcgtt ctggctggct gcgggttttg ggggactgct cgggttctgctg 1920
acgctgtgct tgggtggcctgc ttggtcttct gcgggttcgg 2040
ctacggctg ggtcctgctg caggttctag cttccgcgtt ctggctggct gcgggttttg 2100
cggggcggata ttcagcctgt ttcagcctgt ttcagcctgt 2160
gtatcggcgc tcggaattgc cacgcaagtgc eccccctctct gcctctgcc gacttttcct 2220
ggcgggacct gcgtaaataac gacagtaaaa aacgcaacgg cttgtggagct tttgtgctgg 2280
tccgacctgc gac 2293

<210> SEQ ID NO 6
<211> LENGTH: 86
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic nucleotide sequence

<200> SEQUENCE: 6
cccggtatca atccoaacgc ggaataactt cgtatgcct acatttacgc aagttatgg 60
tccggtatc tccagacata gcggtg 86

<210> SEQ ID NO 7
<211> LENGTH: 4172
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic nucleotide sequence

<200> SEQUENCE: 7
gcccttttgc gggaatgtg cgcgggaccc ctatttttgct aatctctaca atacaccaaa 60
atatcgtatg gctatagca gtaataacgct gaaatatttag aatatttagg 120
agagtatag tatctaaactt tcgtcggcgt cctacttgcct cttttttgcg gcgcttttgc 180
ttcgtgttt tatgtaacac gaaagaggtgc tgaagatcgtg aagatatgtg 240
tcgtctggat gggattacatc gaaactgac tcgagaccc taaagttccg tgaagtttctg 300
ggccgagggc accttttctta atgtgacgcc cttttttaagct tctcgacttg gcggcgtgtg 360
tactaccttg tctggggggt cacagcaacat cttgtggccg caccaatctct ctctggactg 420
actcttgtga gatctaatcc gccatcttccc ggcggtgtaa gacatcaggg ctatcacac 480
acattccag tcgctgctaa aacatagtgc atacacccgc gcggactcta cttctgtgac 540
cgatcggaccc accaagggg ctaaaaaat tttcatccag cgggggtatag ctatccac 600
gctgtgctcg tcggggagg cagctagttg aacgcatcagc aacatcagcag ctggtgcagcc 660
cacgctgggt gcaagctgaa cacaaaggtgcc gcaaaatatt aactggcagaa ctaatctac 720
tgctctgggc gccttaattta atagggcggc tcggggaggg ctaaagttgc gcgggaacttc 780
tcgccggtcg cttctggttc gctggtttta tcgtgcctaa acgtggagcc ggtgagctgtg 840
gctgtgctcg tcggctgggt gcagttgcag gcagttggaa gctctggcttg atctagttgc 900
tctcactgg gcggggctcg gccatcttccc gtcagacccc tgcgcgaaga cggctagcag 960
gctgctttcc gccttcctgg cgagccagcc ctgctgctgg gcgtctgggtg atccatgcct 1020
ttcagctttgc aacgactttc taatatttta ggcctagggc ggcctgtgta tcgtctcatc 1080
tcgagccacc agcctatttt gcgtctgggtg gctctgggtg gcggcggatt gcgcgcttc 1140
agtaaaccag atctttcattg cttctctggt gctctgggtt gctctgctc atcgcagaac 1200
aaagctaacct gctagtcagg gctgtgggtgt gctctcggatg agattcagcc ggcggagaa 1260
cgaagaggga gctctgggttt gctctgctgg gctctggttg gctctgctgg gctctgctgg 1320
agtaggtggt gcacaccaag gtggcttgag ccaacaccaac ccggtacta ctagctcagc 1380
-continued

tgttacagt ggtgtgtgcc agcggcgata agcgtgtcct tacggtgttg gactcaagac 1440
gatagttaco gptaagaagcg cagcgtgctgg gctgaagcg gggtgtagtg gcacaagcaca 1500
gcttgagac cagaaccacg aacacgtcga gatacctaca gctcgagota tggaanaacg 1560
ccaacctcc ccagcggcag cagcggcagc cggcagtct ctcggtcaca gtcggcagcc 1620
gagacgacac gagggggcttc cccaggggaa cagacgtgta cccttactagc cctctcctggt 1680
tctccccct ccgacttcag ctgtgtactt ctgttacatt gttgagcagc 1740
ggaagaagcgg cggcagctgg cggggtaaa ggtcctggtgc ctggtctggg ccctttgtggc 1800
acaggtcctc tttcgggttt gcctggtcttt cgttccgact tcggttgataa cccgatttcgac 1860
gagacgatac cgtccggtgcgc agcggcagga cggagcgagcg cagtcgaagtg cgagcgaagag 1920
cgcaagcgc ccaacagcgc ccagccgggct gccggcagcg ggtgggcaggg gatccatgaca 1980
gcttgagac cagaaggtgg gacgagactac gcctgacgaa gggacgccg ggtgggcaggg gatccatgaca 2040
gttagctcact cttacatgac ccagaggtgc tattatttat ctcttactagccctt 2100
gtggaggtctt gaggctatgaa aatctccgta catttcgctgctggtcactgcctt 2160
agacgcttact acctccgtac ttaaggggac caccgcttgg cagttactcca gttcctcgcc 2220
gtcacatcc cactggggat caacttccag cactcacttc attcaagagct cggggtctgg 2280
tcaggtcggt tgcctggttg cagcagagcgg caacgtgtct cccacgagcg cgaataagtg 2340
ttccacagta ctggcctggt ggcgcggccgg cagagacggcc gcgtttcagag cccttcgcttc 2400
cctgtgttct ccactcaggaca cggagcagat cggcgggtgcc cggcggggtag gtcctggttg 2460
tgacactcgc cagtcagctcg ggtgggcaggg ggtgggcaggg gatccatgaca 2520
agcgggtccg cttcagagcag cggagcagcg cggagcagcg gggaggggctt cggcgggtccg 2580
agatgtctgc cagtcctggtg cccacgggtt cggcgggtccg cggagcgggt cggcgggtccg 2640
ggacacagc cagtcctggtg cggcgggtccg cggcgggtccg cggcgggtccg cggcgggtccg 2700
cccaggtccc cccaggtccc cggcgggtccg cggcgggtccg cggcgggtccg cggcgggtccg 2760
agcgggtcca ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg 2820
caacgagcg gggacgagtt cggcgggtccg cggcgggtccg cggcgggtccg cggcgggtccg 2880
acactctg cttccagagc cggcgggtccg cggcgggtccg cggcgggtccg cggcgggtccg 2940
taggggtgta cggcgggtccg cggcgggtccg cggcgggtccg cggcgggtccg cggcgggtccg 3000
agogtcctgc tgtggacgtg cggcgggtccg cggcgggtccg cggcgggtccg cggcgggtccg 3060
gtcctggtcag ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg 3120
ccttgcgcct cgttgcgcgc cggggtgcgc cggggtgcgc cggggtgcgc cggggtgcgc 3180
tggtgtctga ctggcgcggcg cgtggtgcgc cggggtgcgc cggggtgcgc cggggtgcgc 3240
tcctggtcttt ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg 3300
cgggtgctt ggcgggttct cgggtgctt ggtgggcaggg ggtgggcaggg ggtgggcaggg 3360
tcggtgtttc cgggtgctt ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg 3420
gtggtgtttc acacgtgctt ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg 3480
atgcgtgctt ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg 3540
cgtggtcctt ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg ggtgggcaggg 3600
ccacggtcct tttccacgcgc cggggtgcgc cggggtgcgc cggggtgcgc cggggtgcgc 3660
tggtgctt cgtggtgcgc cggggtgcgc cggggtgcgc cggggtgcgc cggggtgcgc 3720

That which is claimed is:

1. Plant cells containing a nucleic acid construct comprising a germline-specific plant promoter operatively associated with a site-specific recombinate coding sequence, wherein the genome thereof comprises a transcriptionally active selectable marker flanked by two recombination target sites; wherein said site-specific recombinate coding sequence operatively associated with said germline-specific plant promoter is selective for said recombination target sites flanking said selectable marker; wherein said germline-specific plant promoter is selected from the group consisting of the LAT52 gene promoter from tomato, the LAT52 gene promoter from tomato, the LAT52 gene promoter from tomato, the pollen-specific promoter of the *Brassica* S locus glycoprotein gene, and the pollen-specific promoter of the *NTPT53* gene; and wherein said site-specific recombinate coding sequence encodes a recombinase selected from the group consisting of Cre recombinase, FLP recombinase, and the R gene product of *Zygosaccharomyces*.

2. Plant cells according to claim 1 further comprising one or more of:

- a nucleic acid fragment flanked by two recombination target sites, wherein said recombination target sites are different from the recombination target sites which flank said selectable marker,
- a nucleic acid construct comprising a conditional promoter operatively associated with a site-specific recombinate coding sequence, or
- a nucleic acid construct comprising a tissue-specific promoter operatively associated with a site-specific recombinase coding sequence.

3. A method for excision of the transcriptionally active selectable marker from the plant cells of claim 1, said method comprising:

- expressing in said plant cells the recombinase encoded by said site-specific recombinase coding sequence which, in turn, promotes recombination between said recombination target sites.

4. The method according to claim 3 wherein said plant cells further comprise one or more of:

- a nucleic acid fragment flanked by two recombination target sites, wherein said recombination target sites are different from the recombination target sites which flank said selectable marker,
- a nucleic acid construct comprising a conditional promoter operatively associated with a site-specific recombinate coding sequence, or
- a nucleic acid construct comprising a tissue-specific promoter operatively associated with a site-specific recombinase coding sequence.

5. A method for the production of recombinant alleles, said method comprising:

- introducing a further nucleic acid fragment flanked by at least two recombination target sites into the plant cells of claim 1, and
- expressing in said plant cells the recombinase encoded by said site-specific recombinase coding sequence which, in turn, promotes recombination between said recombination target sites.

6. The method according to claim 5 wherein said nucleic acid fragment comprises an essential portion of a gene of interest.

7. The method according to claim 5 wherein said plant cells further comprise a second nucleic acid construct selected from the group consisting of a construct comprising a conditional promoter operatively associated with a site-specific recombinase coding sequence and a construct comprising a tissue-specific promoter operatively associated with a site-specific recombinase coding sequence.

8. The method according to claim 7 wherein the site-specific recombinase encoded by said second construct is expressed in response to inducing conditions.

9. The method according to claim 7 wherein the site-specific recombinase encoded by said second construct is expressed in a tissue selective manner.

10. The method according to claim 5 wherein the recombination target sites flanking said nucleic acid fragment are
recognized by a site-specific recombinase which is expressed under the control of a conditional promoter or a tissue-specific promoter.

11. The method for the production of recombinant alleles, said method comprising:

- introducing an additional at least one site-specific recombinase responsive construct into the plant cells of claim 1.
- wherein said construct(s) comprise(s) a nucleic acid fragment and a second selectable marker,
- wherein said second selectable marker is flanked by a first pair of recombination target sites, and
- wherein said nucleic acid fragment is flanked by a second pair of recombination target sites, and
- expressing in said plant cells the recombinase encoded by said site-specific recombinase coding sequence which, in turn, promotes recombination between said recombination target sites.

12. The method according to claim 11 wherein said first pair of recombination target sites is recognized by a site-specific recombinase which is expressed under the control of a germline-specific plant promoter and said second pair of recombination target sites is recognized by a site-specific recombinase which is expressed under the control of a conditional promoter or a tissue-specific promoter.

13. The method according to claim 11 wherein said plant cells further comprise a nucleic acid construct selected from the group consisting of a construct comprising a conditional promoter operatively associated with a site-specific recombinase coding sequence and a construct comprising a tissue-specific promoter operatively associated with a site-specific recombinase coding sequence.

14. A method for the conditional assembly of functional gene(s) for expression in eukaryotic cells by recombination of individual inactive gene segments from one or more gene(s) of interest,

wherein each of said segments contains at least one recombination target site, and

wherein at least one of said segments contains at least two recombination target sites, said method comprising:

- introducing said individual inactive gene segments into the plant cell of claim 1, thereby providing a DNA which encodes a functional gene of interest, the expression product of which is biologically active, upon passage of the genome derived from said cells through gametogenesis.

15. A method for the generation of recombinant plants, said method comprising transforming plant zygotes with nucleic acid constructs comprising a germline-specific plant promoter operatively associated with a site-specific recombinase coding sequence and allowing the zygote to develop,

wherein said germline-specific plant promoter is selected from the group consisting of the LAT52 gene promoter from tomato, the LAT56 gene promoter from tomato, the LAT59 gene promoter from tomato, the pollen-specific promoter of the Brassica S locus glycoprotein gene, and the pollen-specific promoter of the NTP303 gene; and

wherein said site-specific recombinase coding sequence encodes a recombinase selected from the group consisting of Cre recombinase, FLP recombinase, and the R gene product of Zygospore chromyze.

16. Plant cells according to claim 1, wherein said plant cells are protoplasts or gametes.

17. A transgenic plant comprising the plant cells of claim 1.

18. The transgenic plant according to claim 17, wherein said plant is selected from the group consisting of tomato, tobacco, wheat, rice, maize, soybean, potato, cotton, and alliah.