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Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus
location, frequency content, and speed. Collectively, the neurons implement the visual system’s prefer-
ential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how
the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a
generic neural circuit and find that stochastic changes in strengths of synaptic connections entail
fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of
sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of
fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer
sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function
observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive
fields. The optimal allocation arises in our simulations without supervision or feedback about system
performance and independently of coupling between neurons, making the system highly adaptive and
sensitive to prevailing stimulation.
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Visual systems obtain sensory information using large popula-
tions of specialized neurons. Each neuron is characterized by its
receptive field: a spatiotemporal window in which signals are
accumulated before the neuron responds. Signals are weighted
differently in different parts of receptive fields. The weighting
determines the selectivity (“tuning”) of the neuron to a particular
pattern of stimulation. Motion-sensitive neurons, for instance, are
each selective to a range of stimulus speeds within their receptive
fields (Nakayama, 1985; Rodman & Albright, 1987; Watson &
Ahumada, 1985).

Since the total number of neurons is limited, visual systems face
a problem of resource allocation: to which stimuli they should be
most sensitive. This problem is dynamic because limited neural
resources are available for use in a highly variable environment.
Little is known about how the resource allocation problem is
solved. Do visual systems monitor which aspects of stimulation
prevail in the current environment? Do they use a specialized
mechanism that coordinates the allocation of receptive fields?

We propose that effective resource allocation can be understood
in terms of two basic features of biological motion sensing. First is
the plasticity of neuronal circuits that control the selectivity of
receptive fields. It is known from studies of visual attention and
adaptation that neuronal receptive field are highly variable (Bar-
low, 1969; de Ruyter van Steveninck, Bialek, Potters, & Carlson,
1994; Hietanen, Crowder, Price, & Ibbotson, 2007; Krekelberg,
van Wezel, & Albright, 2006; Moran & Desimone, 1985; Seung,
2003; Vislay-Meltzer, Kampff, & Engert, 2006; Womelsdorf,
Anton-Erxleben, & Treue, 2008). This variability has a stochastic
component. Even though the selectivity of individual neurons may
appear stable when measured by averaging spiking neuronal ac-
tivity, individual spikes and changes in synaptic weights caused by
coincident spiking are stochastic processes. Our results indicate
how the stochasticity can be instrumental in optimization of visual
performance.

Second is the fact that the capacity of individual neurons for
estimating stimulus parameters is associated with uncertainty of
measurement (Cherry, 1978; Daugman, 1985; Gabor, 1946, 1952;
Marčelja, 1980; Resnikoff, 1989). In particular, receptive fields of
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different sizes are useful for measuring different aspects of stim-
ulation (Gepshtein, Tyukin, & Kubovy, 2007). Small receptive
fields are useful for localization of stimuli, i.e., for measuring
stimulus location, whereas large receptive fields are useful for
measuring stimulus frequency content. Thus, the size of receptive
field should be an important parameter for optimizing system
behavior.

We investigate consequences of stochastic fluctuations in
receptive field size using numerical simulations and analysis.
Numerically, we model plasticity of synaptic weights in generic
neural circuits and find that the plasticity is accompanied by
fluctuations of receptive field size and that the amplitude of
fluctuations covaries with receptive field size. Analytically, we
use standard stochastic methods (Gardiner, 1996) to explore
consequences of such fluctuations in neuronal populations.

We find that the fluctuations can steer receptive fields of mul-
tiple neurons toward a stable state that is remarkable in two
respects. First, the distribution of receptive field sizes supports a
distribution of spatiotemporal visual sensitivity that is strikingly
similar to that observed in the human vision (Kelly, 1979), illus-
trated in Figure 1. Second, the distribution of receptive field sizes

in the population is consistent with prescriptions of a model of
efficient allocation of receptive fields in the human visual system
(Gepshtein et al., 2007), where errors of measurement are mini-
mized across all receptive fields.

Local Dynamics

Uncertainty of Measurement

Uncertainty principle. The capacity of individual neurons for
estimating stimulus location and frequency content is limited by a
constraint known as the “uncertainty principle” (Gabor, 1946,
1952) or “uncertainty principle of measurement” (Resnikoff,
1989). According to this principle, the uncertainties associated
with measuring the location and frequency content of the signal
over some interval �x (spatial or temporal) are not independent of
one another:

UxUx̃ � C, (1)

where Ux is the uncertainty of measuring signal location within �x,
Ux̃ is the uncertainty of measuring the variation of signal over �x
(which is the “frequency content” of the signal on �x), and C is a
positive constant. Equation 1 implies that, at the limit of measure-
ment (UxUx̃ � C), the two uncertainties trade off: decreasing one
uncertainty can only be accomplished by increasing the other.

The uncertainty principle has proven to be most useful for
understanding function of individual visual neurons in the primary
visual cortex. The neurons were shown to implement an optimal
tradeoff between the uncertainties associated with measurement of
stimulus location and spatial frequency content (MacKay, 1981;
Marčelja, 1980; Daugman, 1985; Glezer, Gauzel’man, & Iakovlev,
1986; J. P. Jones & Palmer, 1987).

Here we are concerned with consequences of the uncertainty
principle for neuronal populations characterized by a broad range
of spatial and temporal extents of receptive fields. Gepshtein et al.
(2007) have recently undertaken an analysis of such a system.
They considered an ideal case in which the neurons were allocated
to stimuli such that the conditions of measurement with the same
expected uncertainty would receive the same amount of neural
resources. The analysis showed that a characteristic of perfor-
mance expected in the ideal visual system had the same shape as
a well-known characteristic of human contrast sensitivity: the
Kelly function illustrated in Figure 1. In particular, it was predicted
that the position of the sensitivity function in the coordinates of
Figure 1 would depend on statistics of stimulus speed, but the
shape of the function would be invariant under changes in stimulus
statistics.

This view has been supported by a study of how motion adap-
tation changes contrast sensitivity across the entire domain of the Kelly
function (Gepshtein, Lesmes, & Albright, 2013). The changes of
contrast sensitivity formed a pattern similar to the pattern predicted
for the ideal system. From this perspective, the sensitivity function
and its adaptive changes result from an optimization process that
mediates the efficient and flexible allocation of neurons, in accord
with the expected uncertainty of measurement, and in face of the
variable statistics of the environment.

Here we explore how this optimization can be implemented in
visual systems. We address this question by, first, reviewing how
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Figure 1. Visual contrast sensitivity in a space-time graph. A. Human
spatiotemporal contrast sensitivity (Kelly function) transformed from the
frequency domain to space-time (Gepshtein et al., 2007; Kelly, 1979;
Nakayama, 1985). The axes are the temporal and spatial extents of recep-
tive fields. The colored contours (isosensitivity contours) represent contrast
sensitivity. The oblique lines represent speeds (constant-speed lines). The
lines are parallel to one another in logarithmic coordinates. B. Spatiotem-
poral sensitivity function that emerges in the present simulations from
independent stochastic fluctuations of receptive fields in multiple motion-
sensitive neurons.
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the expected uncertainty of measurement varies in populations of
neurons characterized by a wide range of spatial and temporal
extents of their receptive fields.

Composite uncertainty of measurement. Consider a visual
system in which the same neurons can be used for localizing
stimuli and for measuring stimulus frequency content. As men-
tioned, at the limiting condition of measurement (UxUx̃ � C),
decreasing uncertainty about one aspect of measurement (say,
location) is necessarily accompanied by increasing the other (fre-
quency content). When written as a function of receptive field size,
the joint uncertainty of measuring stimulus location and frequency
content incorporates both tendencies, the increasing and the de-
creasing:

Uj(X,X̃) � �XX � �X̃ ⁄ X, (2)

where �X and �X̃ are positive coefficients representing the relative
importance of the two aspects of measurement and X is the size of
the receptive field (spatial or temporal). This uncertainty function
has a unique minimum, at which receptive fields are most suitable
for concurrent measurement of stimulus location and frequency
content (Gepshtein et al., 2007).

When measurements are performed in space and time, using
receptive fields of spatial and temporal extent S and T, the joint
uncertainties of separate spatial and temporal measurements are

Uj(T,T̃ ) � �TT � �T̃ ⁄ T,

Uj(S,S̃) � �SS � �S̃ ⁄ S,

and the joint uncertainty of spatiotemporal measurements (which
we call “composite uncertainty”) is

Uc � Uj(T,T̃ ) � Uj(S,S̃). (3)

The smaller the composite uncertainty of a receptive field, the
more useful it is for jointly measuring location and frequency
content of spatiotemporal stimuli. Receptive fields with equal
uncertainty Uc are assumed to be equally useful for joint spatio-
temporal measurements.

As mentioned, the expected utility of visual measurement could
guide allocation of receptive fields of different spatial and tempo-
ral extents. Now we turn to the question of how this allocation can
be implemented in terms of basic properties of neuronal circuits.
We start by scrutinizing the mechanisms that control the size of
receptive fields in neural circuits, with an eye for how the function
of such circuits is constrained by Gabor’s uncertainty principle.

Basic Sensory Circuit

We model a simple neural circuit in which the output receptive
field size is controlled by weighted inputs from several cells with
different receptive field sizes. In this circuit we implement a basic
mechanism of neural plasticity (Bi & Poo, 2001; Bienenstock,
Cooper, & Munro, 1982; Hebb, 1949; Paulsen & Sejnowski,
2000). We find that this mechanism alone is capable of adaptively
adjusting the size of receptive field according to the task at hand.
This adaptive tuning of receptive fields is enabled by stochastic
fluctuations of the receptive field size, while the fluctuations are
themselves a byproduct of circuit plasticity. The resulting dynam-

ics of receptive field size follows a simple principle in which
receptive field variability is a function of receptive field size.

We start with a circuit of which the measured characteristic is a
receptive field on a single dimension x (Figure 2A), which can be
space or time. We first study how the circuit can be used to
estimate stimulus location on x. We then generalize to joint mea-
surement of stimulus location and frequency content on x, after
which we consider joint measurement of location and frequency
content in two dimensions (space and time).

Figure 2A is an illustration of an elementary circuit used in our
simulations and analysis. “Readout” cell could be activated by
two “input” cells and with receptive fields of different sizes
on x. Receptive field size was defined as the standard deviation of
stimulus locations on x that evoked cell responses: S1 and S2 for
cells and . For simplicity, we first considered receptive fields
that fully overlapped, but which were not generally concentric.
The stimuli were dynamic textures with natural spatial and tem-
poral amplitude spectra (as explained in Appendix A).

Input cells could each be excited by stimuli falling within their
receptive fields:

yi(x) � exp(�0.5(x ⁄ Si)
2), (4)

where yi was the response of ith cell, encoding the distance of the
stimulus from the center of receptive field. In simulations of
idealized neurons, values of yi directly represented the strength of
cell responses, and in simulations of Poisson neurons, values of yi

represented the rate of Poisson random variables (Appendix A).
The maximum value of yi was the same for all input cells, and it
was independent of size Si of cell receptive field. Activation of
input cells could lead to activation of the readout cell, modulated
by input-readout weights wi:

yr ��1, �i wiyi � �

0, otherwise,
(5)

where yr is the response of the readout cell and � is response
threshold of readout cell. In effect, the size of readout receptive
field depended on sizes of input receptive fields (here S1 and S2),
such that S1 � Sr � S2. (The size of the readout receptive field, Sr,
was computed as explained in Appendix A, Equation A2.)

Response threshold � in Equation 5 depended on recent stim-
ulation:

� � �
k��K�1

0

yr
(k) ⁄K, (6)

where k is a serial index of stimuli with k � 0 indicating the most
recent one. That is, threshold � is a running average of K most
recent responses of the readout cell. (In the simulations for Figure
3, K was set to 50.) This way we implemented “metaplasticity”
(i.e., adaptive plasticity; Abraham & Bear, 1996; Bienenstock et
al., 1982). Threshold � fluctuated around a constant value while
stimulation was stationary (Figure 3B), but � rapidly changed its
value as stimulation changed, ensuring that several input cells (two
input cells in Figure 2) had to be activated together to evoke a
readout response.

We studied how plasticity of input-readout connections affected
the receptive field size of readout cell. In numerical simulations,
we had the input-readout synaptic weights wi depend on the
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relative timing of presynaptic and postsynaptic spiking activity (Bi
& Poo, 2001; Hebb, 1949; Paulsen & Sejnowski, 2000). Weights
increased when a spike of input cell coincided with (fell within a
short interval of) a spike of readout cell:

�wi � 	ci � 
wi, (7)

where ci was the coincidence rate—the fraction of input spikes
that coincided with readout spikes (Appendix A, Equation A1)—
and ε was a positive constant. Weight increments were balanced by
exponential decay of weights at a rate determined by constant � �
0 (Bienenstock et al., 1982).

Readout cells tended to cofire more with input cells whose
receptive fields were small rather than large. This is illustrated in
Figure 3. Figure 3A is a comprehensive map of coincidence rates:
c1 (for cells and ; left panel) and c2 (for cells and ; right
panel):

• Rate c1 was high for all combinations of weights w1 and w2.
This is because the receptive field of was encompassed by the
receptive field of , activation of was always accompanied by
activation of , and so the joint activation of and led to
activation of . But activation of alone was insufficient to
activate , as is illustrated in the right panel of Figure 3A.

• Rate c2 was high only for some combinations of w1 and w2.
Since coincidence c1 was larger than coincidence c2 for most
combinations of weights, weight w1 was incremented more

often than weight w2, making Sr on average more similar to S1

than to S2.

The ensuing receptive field dynamics was characterized by two
prominent tendencies. First, readout receptive field size Sr fluctu-
ated between the smallest and largest input receptive field sizes
with a clear central tendency, Sr

�, which we called the preferred
size of the readout receptive field, illustrated in Figure 2B–C.
Second, the amplitude of fluctuation of Sr was a function of
proximity of Sr to Sr

�: the closer to Sr
� the smaller the amplitude, as

illustrated in Figure 2C.
Steady-state behavior of this circuit was remarkably stable,

summarized in the graph of input-readout weights w1 and w2 in
Figure 4. Having started with different distributions of the weights,
represented by the grid of arrows in Figure 4, we found that in the
long run the weights converged to the same vicinity of the weight
space, marked by the gray circular outline. At the steady-state,
weight w1 was larger than weight w2, underlying the aforemen-
tioned result of S1 � S2.

Measurement of location. The above behavior of the ele-
mentary circuit can be thought of as a competition of input cells
for control of the readout cell. We have observed above that the
input cell with a smaller receptive field won the competition,
and so the readout receptive field size tended to be small. This
behavior is consistent with the fact we mentioned before that
small receptive fields are generally more suitable for measuring
stimulus location than large receptive fields. We therefore

0
1.4 1.45 1.5 2.01.0

0.5

1.0

0
1.4 1.45 1.5 2.01.0

0.1

0.2

A

R

x

I1 I2

Stimulation

w1 w2

CB

Size (S readout receptive fieldr dleif evitpecer tuodaerS( eziSfo ) r) of

S fo egna hc detcepx
E

r
)

%(

)
S(p

r

Receptive field
size of I1

Receptive field
size of I2

Figure 2. Mechanism and dynamics of receptive field size. A. Basic neural circuit. Input cells and receive
stimulation from sensory surface x, indicated by the converging lines in corresponding colors. The range of
inputs for each cell is its receptive field. is the readout cell whose activation is mediated by input-readout
weights w1 and w2. The weights are dynamic: They depend on coincidence of activation of input and readout
cells (Equation 7 and Figure 3A). The weights determine the size of the readout receptive field. B. Central
tendency of readout receptive field (Sr in Equation A2), measured in numerical simulations of the circuit in A.
As the input-readout weights are updated, Sr fluctuates on the interval between the smallest and largest input
receptive field sizes, marked on the two sides of the plot. The histogram represents probabilities of the different
magnitudes of Sr over the course of numerical simulation (Appendix A). The dashed line is the central tendency
of Sr: the most likely receptive field size. C. Variability of Sr. The data points represent average changes of Sr

for different magnitudes of Sr. The more Sr is removed from its central tendency (the dashed line copied from
B) the larger is its variation, akin to the variation of uncertainty of measurement by a single receptive field
captured by Equation 2.
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consider the above circuit as an implementation of this ten-
dency.

Measurement of frequency content. In contrast, large recep-
tive fields are more suitable than small ones for measurement of
stimulus frequency content. We next studied measurement of stimulus
frequency content with the same circuit. We found that now the input
cell with a larger input receptive field won the competition, and so the
readout receptive field size tended to be large.

In the following paragraphs, we illustrate this by first considering
measurement of frequency content alone, disregarding measurement
of stimulus location, and then we turn to effects of jointly measuring
stimulus location and frequency content (Figure 4B).

The size of input receptive fields in frequency domain fx is
reciprocal to its size on x, which is why responses of input cells to
stimulation in the frequency domain were defined as

zi(fx) � exp(�0.5(fxSi)
2). (8)

As in Equation 4, values of yi either represented the strength of cell
responses directly (in simulations of idealized neurons) or they rep-
resented the rate of Poisson random variables (in simulations of
Poisson neurons) as detailed in Appendix A. Applying the same
method of updating input-readout weights as above (Equation 7), we
found that now readout receptive field size (Sr) tended toward the
larger input receptive field size on x (S2). That is, Sr tended toward the
smaller input size on fx, but because of the reciprocity of receptive
field sizes on x and fx, the tendency toward a smaller size on fx was
manifested as a tendency toward a larger size on x.

This behavior is summarized in Figure 4B, in the graph of
input-readout weights (pink outline and histogram). As before,
steady-state behavior of the circuit was remarkably stable, but
now weight w1 was lower than weight w2 such that S1 � S2.

To sum up, when readout receptive fields measured either
stimulus location alone or frequency content alone, their evo-

lution led to opposing tendencies in receptive field size: for
measurement of location they tended to become smaller and for
measurement of frequency content they tended to become
larger. In both cases, readout receptive field sizes fluctuated
around their preferred values: the farther from the preferred
value the larger the amplitude of fluctuation (Figure 5).

Joint measurement of location and frequency content.
Next we studied the behavior of the basic circuit of which the input
cells were activated by stimuli that varied in two parameters:
location x and frequency content fx. Input cell response was de-
fined as

yzi(x, fx) � yi(x)zi(fx), (9)

where yi(x) and zi(fx) were as in Equations 4 and 8. Resulting
preferred weights w1 and w2 are summarized in Figure 4B and
dynamic of receptive field size Sr is summarized in Figure 5. The
values of weights and receptive field sizes fell in between those
observed when only stimulus location or only stimulus frequency
content were taken into account.

Equation 9 is a general description of circuit behavior, of which
the conditions captured by Equations 4 and 8 are special cases.
Circuit dynamics for all the regimes of measurement considered
above is summarized in Figure 4B and Figure 5.

In Figure 4B we plotted the convergence regions and histograms
of weights obtained during numerical simulations of circuit dy-
namics. To summarize, preferred weights depended on the nature
of events that activated input cells, and so did preferred readout
sizes Sr (Appendix A, Equation A2), as shown in Figure 5. Nota-
bly, we found that in every case readout receptive field size Sr

fluctuated such that the amplitude of fluctuation varied as a func-
tion of Sr.
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Figure 3. Coincident firing of input and readout cells in the basic circuit. A. Coincidence rate ci of spiking for
input and readout cells (Equation A1) for all combinations of input-readout weights w1 and w2, plotted separately
for cells (left) and (right). For , all input spikes are accompanied by readout spikes, so that c1 � 1 for
every combination of w1 and w2. For , input spikes sometimes do not lead to firing of the readout cell. Since

is more likely to fire together with the readout cell than , weight w1 is on average larger than weight w2,
and the size of readout receptive field gravitates toward the size of receptive field in , which is smaller than
the size of receptive field in . B. Adaptive response threshold � of readout cell for three regimes of
measurement. The blue dots represent the values of � recorded in 10,000 iterations (every fifth value is shown).
The simulation was divided to three periods of equal length, each using a different computation of input cell
responses, from left to right: Equation 4, Equation 9, and Equation 8. Threshold � fluctuates in the vicinity of
a value that is distinct for each method of response computation; it is represented by the red line: the running
average of 100 previous magnitudes of �.
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Circuit Generalization

The uncertainty principle for receptive fields. Behavior of
the neural circuit introduced in Figure 2 can be summarized as
follows.

• Input cells are vying for control of the readout cell, as they
measure the location and frequency content of stimuli impinged on
their overlapping receptive fields.

• The input cell with the smallest receptive field tends to win the
competition when stimulus location is the only factor, because acti-
vation of such a cell is on average a more reliable indicator of stimulus
location than activation of cells with larger receptive fields.

• Conversely, the input cell with the largest receptive field tends to
win the competition when stimulus frequency content is the only
factor.

• When these factors are combined, advantages and disadvantages
of small and large receptive fields drive the readout receptive fields
toward an intermediate size.

This behavior is expected in a system constrained by the uncertainty
principle of measurement (Equation 1). Readout receptive fields in
our simulations tended to be small or large when we considered,
respectively, only the location or only the frequency content of the
stimulus, and they tended to be of intermediate size when both
stimulus location and frequency content were taken into account, as if
the circuit was optimized according to the uncertainty principle.

Key features of circuit behavior observed in the elementary case
of Figure 2 held across a very broad range of circuit configura-
tions. Circuit dynamics captured by Figure 5 was found whenever
multiple input cells with different receptive field sizes responded
to the same stimuli (characterized by the same x and/or f), and
whenever readout threshold was such that readout cell activity
depended on multiple input cells, whether the input receptive fields
overlapped fully or partially. The dynamics did not depend on the

w1

w2 w2

w1

0

1

10

0.3

0.5

5.03.0

BA

Figure 4. Stable-state behavior of the basic circuit. A. Circuit dynamics led to remarkably stable outcomes,
illustrated here in the space of input-readout weights w1 and w2. The plot summarizes the results of multiple
numerical simulations with different starting pairs of weights (w1, w2). Each arrow represents the mean direction
and magnitude of weight change measured at the arrow origin. The region to which the weights tended to
converge is marked by a gray outline, magnified in panel B. (The two other outlines, in pink and green, are
explained in panel B.) B. Enlargement of a region of the weight space in panel A. The gray outline marks the
same region in (w1, w2) as the gray outline in panel A. The outline is superimposed on a histogram of weights:
a grid of (gray) disks of which the sizes represent how often the simulation yielded the pairs of weights (w1, w2)
at corresponding disk locations. When circuit activity was controlled by stimulus location only, weight w1 tended
to be larger than weight w2, and so the size of the readout receptive field tended toward the size of the smaller
input receptive field, as reported in Figures 2B and 2C. When circuit activity was controlled only by stimulus
frequency content, the weights reversed: w2 tended to exceed w1, and so the size of the readout receptive field
tended toward the size of the larger input receptive field (cell ), summarized by the histogram in pink. When
circuit activity was controlled by both stimulus location and frequency content, the weights had intermediate
values, summarized by the histogram in green, yielding readout receptive fields of intermediate size.
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Size of readout receptive field (S )r
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Figure 5. Lawful fluctuations of receptive field size. Variability of read-
out receptive field size (Sr) for different regimes of measurement: mea-
surement of stimulus location alone (gray), stimulus frequency content
alone (pink), and jointly stimulus location and frequency content (green).
The data points represent average changes of Sr for different magnitudes of
Sr (as in Figure 2C). In all cases, the more Sr was removed from its central
tendency (the dashed line) the larger was its variation.
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shapes of weighting functions for input receptive fields, on
whether the input receptive fields were fixed or their sizes varied,
or on whether spiking activity was noisy or not (as long as the
noises on input cells were uncorrelated). The same dynamics was
observed in circuits where input-readout weights decayed in the
absence of spike coincidences (as described above) or the weights
were normalized and also in circuits that consisted in many more
cells than in Figure 2, as we show next.

Measurement in space-time. Similar results held in circuits
activated by more stimulus dimensions and using more input cells
than in Figure 4. For example, Figure 6 summarizes the results of
receptive field fluctuation in a circuit of which the input receptive
fields overlap both in space and time, using 25 input cells (Ap-
pendix A). Here, not only the spatial and spatial-frequency aspects
of stimuli were taken into account (as in the simulations repre-
sented in Figures 4B and 5 in green) but also the temporal and
temporal-frequency aspects. The coordinates in Figure 6A repre-
sent the temporal (T) and spatial (S) extents of a receptive field.
The two dotted grid lines intersect at the preferred readout recep-
tive field size Xr

� � (Tr
�, Sr

�): a spatiotemporal generalization of the
result indicated by the dashed lines in Figure 5.

It is convenient to think of receptive field properties in terms of
a balance of adaptive and conservative tendencies. The adaptive
tendency is manifested by fluctuation of receptive fields, underly-
ing flexible and efficient allocation of receptive fields, as we show
below. Yet this flexibility must take place against a background of
conservative processes; otherwise the visual system would be
unprepared for sensing stimuli that are generally important but
which are absent in the current stimulation. In the simulations for
Figure 6, the readout cell was set to preserve some of its properties.
We implemented this by enhancing one of the input weights,
which made the size of the readout receptive field tend toward a
point in (T, S) marked by the white cross in Figure 6: the original
size (T0, S0) of the readout receptive field in all simulations for
Figure 6.

Independently of initial conditions, the simulations yielded a
highly consistent result, summarized in Figure 6A. The plot is a
map of the probabilities of Xr in the course of one numerical
simulation. Preferred size Xr

� is the point in (T, S) at which the
probability has the highest value, marked by the intersection of
white dotted lines. On multiple iterations, each starting at the
initial condition marked by the white cross, the readout receptive
field invariantly tended to the same preferred size Xr

�. The same
result was obtained when the initial conditions were selected for
every iteration at random.

In the simulations for Figure 6A, the distribution of stimuli was
uniform. Next, we studied how biases in stimulation affect the
preferred size of readout receptive field. The distribution of speeds
in the natural stimulation is not uniform (e.g., Betsch, Einhäuser,
Körding, & König, 2004; Dong & Atick, 1995). In the simulations
for Figure 6B–6D, the prevalent speed of stimulation increased
from low to high, indicated by the probability density function
plotted at top right of each panel. The preferred receptive field size
of the readout cell shifted toward the receptive field size of input
cells tuned to speed similar to the prevalent speed. As the prevalent
speed increased, the preferred size of the readout receptive field
shifted further toward the prevalent speed. That is, in Figure 6B,
where the prevalent speed was low, the preferred readout size
shifted toward the bottom right corner of the graph. And in Figure
6D, where the prevalent speed was high, the preferred readout size
shifted toward the top left corner.

Overall, behavior of the basic circuit can be summarized in
terms of a tradeoff of stability and variability. On the one hand,
readout receptive field tends toward a fixed size: preferred size X�

biased toward the more likely stimuli. On the other hand, the size
of the readout receptive field fluctuates in a manner that can be
characterized by a functional relation between the expected change
of readout receptive field size (the “amplitude of fluctuation”) and
the distance of current readout size from the preferred readout size
|X � X�|. We summarize this relationship as

y ti sned d ezila
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Figure 6. Stochastic tuning of readout receptive fields in space-time. The coordinates in every panel represent
the temporal and spatial extents, T and S, of a receptive field. A. Preferred size of readout receptive field. The
white cross indicates the starting receptive field size X0 � (T0, S0). The green cross indicates a neutral point, at
which the weights of all the input cells to the readout cell are equal to one another. (The white and green crosses
have the same locations in all panels.) The map in the background is the probability of the different sizes of
readout receptive fields over the course of simulation (10,000 iterations), indicating that the size of readout
receptive field tends to drift toward a certain spatial-temporal size (“preferred size”) marked by the intersection
of white dotted lines at Xr

� � (Tr
�, Sr

�). B–D. Effect of the prevailing speed of stimulation on the readout receptive
field. Simulations were performed as for panel A, but using biased stimulus distributions, characterized by
different prevailing speeds ve (Equation B5) represented by the stimulus probability distributions plotted in green
at top-right of each panel (0.2 deg/s in B, 1.0 deg/s in C, and 5.0 deg/s in D).
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E[�X] � f(X), (10)

where E[�X] is the expected amplitude of fluctuation and f(X) is
a function with a single global minimum, as in Figure 5.

Global Dynamics

In the previous section, we associated the stimulus-dependent
plasticity of neural circuits with random fluctuations and drifts of
receptive field size. We found that the dynamics of receptive field
size was described by a function motivated by Gabor’s uncertainty
principle. We have also found that the distribution of receptive
field characteristics depended on the statistics of stimulation.

Now we turn to a different level of modeling and consider
neuronal plasticity in terms of ensemble dynamics. We model an
ensemble of neurons for which we examine steady-state distribu-
tions of receptive field characteristics. We see that the allocation of
receptive fields derived from the stochastic formulation is remark-
ably similar to the allocation found in biological vision and con-
sistent with predictions of efficient allocation (Figure 1).

Model of Global Dynamics

Amplitude of size fluctuation. Given the definition of mea-
surement uncertainty that applies to the entire range of receptive
field spatial and temporal extents (Equation 3), our model of

receptive field size fluctuation must capture the association of
measurement uncertainty and amplitude of fluctuation across an
equally broad domain. The general form of this association is

E[�X] � [Uc(X)],

where Uc is the composite uncertainty (Equation 3) and [·] is an
operator that establishes the correspondence between properties of
uncertainty and properties of receptive field size fluctuations. We
considered operator generated by random walks of this form:

�X � �Uc(X)R, (11)

where R is a random process sampled from a bivariate normal
distribution, and 	 is a positive constant that represents the rate at
which measurement uncertainty Uc affects the fluctuation. Below
we show that on this formulation, fluctuation of readout receptive
field size has the desired properties (Equation 13).

Random process R in Equation 11 can be thought of as a model
of stochastic motion of point Xi � (Ti, Si) on plane (T, S). Changes
of Xi in regions of high uncertainty are on average larger than in
regions of low uncertainty, having the effect that points Xi drift
toward regions of low uncertainty, as illustrated in Figures 7 and
8. In Appendix B we demonstrate that this behavior is predicted by
a model in which fluctuation of receptive field size is formalized
as a continuous-time stochastic process.
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Figure 7. Consequences of stochastic tuning for single receptive fields. Coordinates of every panel represent
the temporal and spatial extents of receptive fields relative to the center of the region of interest marked by the
white cross. A. Effect of measurement uncertainty. Initially all receptive fields (N � 1,000) have the same
parameters X0 � (T0, S0) marked by the white cross (at the same location in all panels). Red dots represent the
final sizes of receptive fields (“end points”), each after 700 iterations by Equation 11. The large yellow
circumference contains the region of permitted fluctuations (Equation 12). The contour plot in the background
represents the measurement uncertainty function (Equation 3) whose minimum is marked by the gray asterisk.
The three trajectories composed by gray arrows illustrate 20 updates of three model neurons (arbitrarily selected
for this illustration). The lengths of arrows are proportional to measurement uncertainties at arrow origins, and
arrow directions are sampled from an isotropic probability distribution (R in Equation 11). The inset is a
normalized histogram of all end points, indicating that receptive field sizes tend to drift toward lower
measurement uncertainty. B–D. Effect of stimulation. Results of simulations of stochastic tuning performed as
in A, but at three different prevailing speeds of stimulation (Equation B5). The three columns show results for
different prevailing speeds, increasing from B to D. The direction of receptive field drift depends on the
prevailing stimulus speed, indicated by the directed yellow markers in top plots, and by the high concentration
of end points in the histograms in bottom plots. Intersections of the white grid lines in bottom panels mark
preferred locations of receptive fields, as in Figure 6. In the yellow directed markers (also used in Figure 8A),
the initial location of receptive fields is represented by a small disk and the direction of receptive field drift is
represented by a line to the mean end point of receptive field fluctuations.
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Biases of fluctuation. Measurement uncertainty is intrinsic to
the visual system: it does not depend on stimulation. But outcomes
of measurement also depend on lasting properties of stimulation:
an extrinsic factor. Under natural conditions, stimulus speeds are
not distributed evenly (e.g., Betsch et al., 2004; Dong & Atick,
1995) making neurons with certain speed preferences more useful
in one environment than another.

As we saw in our analysis of the basic circuit, receptive field
fluctuations are sensitive to biases in stimulation (Figure 6). The
shift of preferred size toward the prevalent speed (line S � veT for
prevalent speed ve) in the parameter space causes that the region of
size fluctuation narrows in the direction orthogonal to this line. In
other words, random process R in our definition of operator is
generally anisotropic: the “steps” of Xi in the different directions
on the plane are not equally likely. The changes in spatial and
temporal extents of receptive fields are correlated, so that “move-
ments” of receptive fields in the space of parameters are con-
strained to specific trajectories. The trajectories are lines with

slopes determined by cells’ estimate of expected speed in the
environment (see section Organization of Dynamics below).

Constraints on Dynamics

By the nature of input-readout connectivity, fluctuations of
receptive fields are confined to some vicinity of the initial recep-
tive field sizes:

X � �X0
, (12)

where �X0
, is a connected and bounded region in �2, with reflect-

ing boundary �X0
, and where X0 is the original size of the

receptive field. The “reflecting” boundary means that, if X were to
escape �X0

, X was assigned a value inside the boundary as if X
was reflected from �X0

(Appendix B).
Joint effects of adaptive and conservative tendencies in alloca-

tion of receptive fields are illustrated in Figure 7, for small regions
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Figure 8. Stochastic tuning of motion-sensitive cells across parameter space (T, S). Parameters T and S
correspond to the temporal and spatial extents of receptive fields. A. Local tendencies of receptive field
fluctuations. The small directed markers represent mean directions of receptive field fluctuation (Figure 7). The
inset on top right contains one such marker magnified in linear coordinates, as in Figures 7B–7D. (The shape
of local boundary 
 is different in the inset and in the main figure because of the logarithmic coordinates in the
latter.) The markers in red represent a set of adjacent pathlines (see text). Measurement uncertainty is displayed
in the background as a contour plot. The gray curve represents optimal conditions (“optimal set”) of speed
measurement derived as in Gepshtein et al. (2007). The directed markers across point to the optimal set. If not
for conservation of receptive field size (Equation 12), the local tendencies from the locations in red would
converge on the white segment of the optimal set. B–C. Results of stochastic tuning. The heat maps are
normalized histograms of end-point densities of receptive field tuning. In B, the histogram is computed for the
conditions highlighted in red in panel A. In C, the histogram is computed for the entire parameter space. (The
focus of high density and the white segment in panel B are slightly misaligned because of an asymmetry of cell
distribution within the group of highlighted pathlines.)
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in the receptive field parameter space (T, S). Figure 7A illustrates
the effects of measurement uncertainty alone, and Figure 7B
illustrates how effects of measurement uncertainty are modulated
by statistics of stimulation.

Range of fluctuation. In Figure 7A, receptive fields are rep-
resented as points Xi � (Ti, Si). The region circumscribed by the
yellow boundary is the range of fluctuation (Equation 12). It
represents the conservative tendency of receptive field size. All the
receptive fields shown in this figure had the same initial parameter
values and all underwent an equal number of stochastic changes.
The final parameter values of receptive fields are marked by red
points (“end points”). The evolution of three receptive fields are
visualized as trajectories in the parameter space represented by
series of connected black arrows. Arrow sizes illustrate the basic
feature of this approach that the variability of receptive fields
depends on their measurement uncertainty (Equation 11).

As mentioned in section Circuit Generalization, receptive fields
Xi tend to drift toward regions in the parameter space where
measurement uncertainty is low (light regions in the background of
Figure 7A). This tendency is manifested by the high concentration
of end points near the boundary of the range of fluctuations,
toward the minimum of measurement uncertainty.

Local tendency. The distribution of end points is also plotted
in Figure 7A, as a normalized histogram (inset). The peak of
distribution is the local tendency of this stochastic process within
the range of fluctuation, determined by measurement uncertainty
alone. (In Figure 8A we depict such local tendencies for many
locations in the parameter space.)

We validated the results of computational experiments in a
steady-state analysis of receptive field fluctuations. The steady
state is understood here as the time-invariant solution of a Fokker-
Plank equation (Gardiner, 1996) with zero drift and diffusion
coefficients that depend on local measurement uncertainty U(X).
The results of our simulations are consistent with the analytic
prediction: the asymptotic distribution of the probability density of
receptive field parameters X is

p(X) ~ 1 ⁄ U(X)2. (13)

In other words, the stochastic process tends to distribute recep-
tive fields according to their measurement uncertainty U(X),
such that the maximum of p(X) occurs at the minimum of U(X)
(Appendix C).

Effects of stimulus speed. Besides the intrinsic factors, out-
comes of receptive field fluctuations also depend on regularities of
stimulation. Figures 7B–7D illustrate local tendencies of receptive
field fluctuation under three different prevailing speeds of stimu-
lation (increasing from left to right), in the same form as the inset
of Figure 7A. Evidently, local tendencies depend on the prevailing
speed: the higher the prevailing speed the steeper the direction
from the initial receptive field size to the mean end point of
fluctuations. The local tendencies are depicted in the top panels of
Figures 7B–7D by directed markers, each made of a filled circle at
the initial parameters of receptive fields, from which a line is
drawn to the mean end point of fluctuations.

Organization of Dynamics

Figure 8A is a summary of the local tendencies of receptive field
fluctuation across the entire parameter space (T, S). Each local

tendency is represented by a marker directed from initial param-
eters of receptive fields to the mean end points of their fluctua-
tions, as explained in Figure 7B. The markers form a global pattern
with features as follows.

Pathlines. The local tendencies form a flow field that consists
of distinct “streaks,” which we call pathlines. In Figure 8A we
illustrate this notion by isolating a set of markers (highlighted in
red). If not for the conservation of receptive field size (Equation
12), receptive field representations contained in the highlighted
region would “travel” up and down along the pathlines.

The pathlines could be constructed by iteration, placing new
initial parameters of receptive fields in the previous mean end
points. The pathlines can also be derived analytically from Equa-
tions 11–12, as we show in Appendix C.

Optimal set. Figure 8A illustrates how the local tendencies
within pathlines switch directions in midpath. All the switch points
across the pathlines form a curve shown in the figure in gray and
white. This curve is notable in two respects: (a) If not for the
conservation of receptive field size (Equation 12), the receptive
fields would all converge on the curve. We indicate this in Figure
8A by the white segments of the curve, where receptive fields from
the zones highlighted in red would converge. (b) The curve is also
the optimal set of speed measurement (“optimal set”) predicted by
a theory of efficient resource allocation (Gepshtein et al., 2007;
Appendix C).

Figures 8B–8C illustrate the outcomes of receptive field size
fluctuations using the density histograms introduced in Figure 7.
Figure 8B is a histogram for receptive fields that belong to the
pathlines shown in Figure 8A in red. The histogram indicates that
the receptive fields tend to concentrate near the optimal set of
speed measurement (the gray curve).

Figure 8C is a histogram for all the receptive fields. The distri-
bution of receptive field density has a pattern similar to the one
predicted by the theory of efficient resource allocation (Figure
1A), and it corresponds to the pattern of motion sensitivity ob-
served in human vision (Kelly, 1979).

Discussion

We used an idealized visual system to investigate how visual
sensitivity is controlled in face of noisy neural mechanisms and
variable stimulation. We implemented generic properties of neu-
ronal plasticity and explored regularities of the ensuing local and
global dynamics of neuronal receptive fields. We found that the
noisy variation of receptive fields is in fact beneficial to system’s
performance. The stochastic changes of receptive fields and reg-
ularities of stimulation jointly steer neuronal ensembles toward an
efficient distribution of receptive fields. This distribution is pre-
dicted by a theory of efficient allocation of receptive fields, and it
is consistent with a well-known behavioral characteristic of spa-
tiotemporal sensitivity in human vision (Figure 1A).

Previous studies suggested that the observed distribution of
visual sensitivity is a result of optimization of measurement by
large neuronal ensembles (Gepshtein et al., 2007, 2013; Watson,
Barlow, & Robson, 1983). Here we proposed a simple mechanism
for how such optimization can be attained. Notably, the efficient
allocation of receptive fields in multiple motion-sensitive cells
emerges in a process that is purely local and unsupervised.
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The optimization has a local genesis in that the fluctuation of
receptive field properties in every cell is independent of fluctuations in
other cells. The optimization is driven only by the local measurement
uncertainty and by the individual stimulation of every cell.

The optimization is unsupervised in that it unfolds without
having the statistics of stimulation explicitly represented in the
system, and in that this process requires no agency or specialized
system for coordinating the allocation of receptive fields. In other
words, the efficient allocation is an outcome of neuronal self-
organization. The stochastic behavior of multiple cells results in a
“drift” of their receptive fields in the direction of low uncertainty
of measurement, as if the system sought stimuli that could be
measured reliably (cf. “infotaxis” in Vergassola, Villermaux, &
Shraiman, 2007, and minimization of free energy in Friston,
Daunizeau, & Kiebel, 2009). Such behavior makes the system
highly flexible and able to rapidly adapt to the changing environ-
ment, differently for different aspects of stimulation (cf. de Ruyter
van Steveninck et al., 1994).

Stochastic methods have been successfully used in modeling dy-
namics of neural cells and cell populations (Dayan & Abbott, 2005;
Ernst & Eurich, 2002; Harrison, David, & Friston, 2005; Knight,
2000). Such models addressed very fast processes: from activation of
individual ion channels to generation of spikes and spike trains. These
models helped understanding how elementary (microscopic) neural
events add up to macroscopic phenomena (such as evoked response
potentials; Harrison et al., 2005). Here we used stochastic methods to
investigate neural events on a much slower temporal scale: variation
of cell responses manifested in their receptive fields.

Theories of sensory optimization belong on a spectrum between
stimulus-bound and system-bound extremes. On the stimulus end
of this spectrum, the emphasis is on efficient representation of
stimuli, such as in theories of efficient coding (where neuronal
selectivity is conceived as the basis of efficient decomposition of
stimuli; e.g., Barlow, 1961; Bell & Sejnowski, 1997; Olshausen &
Field, 1996) and in theories of perceptual inference (where prior
representation of stimulus parameters is key; e.g., Geisler, 2008;
Maloney & Zhang, 2010; Simoncelli & Olshausen, 2001). On the
system end, theories are primarily concerned with intrinsic prop-
erties of neural systems, such as dynamics of neuronal populations
(Friston & Ao, 2012; Gong & van Leeuwen, 2009; Sutton & Barto,
1981; van den Berg, Gong, Breakspear, & van Leeuwen, 2012)
and receptive fields (Ozeki, Finn, Schaffer, Miller, & Ferster,
2009; Tsodyks, Skaggs, Sejnowski, & McNaughton, 1997).

The present study has gravitated toward the system end of the
spectrum since previous work showed that intrinsic constraints of
sensory measurement are sufficient to explain the large-scale sensory
characteristics in question (Gepshtein et al., 2007, 2013). Here we
found, in addition, that the noise intrinsic to neural systems can be
instrumental in sensory systems tuning themselves for changes in
stimulation (cf. Rokni, Richardson, Bizzi, & Seung, 2007, in motor
systems). We propose that fluctuation of receptive field size is a
means of stochastic optimization of neural function (cf. Ermentrout,
Galan, & Urban, 2008; Faisal, Selen, & Wolpert, 2008; Spall, 2003;
called “stochastic facilitation” in McDonnell & Ward, 2011).

As in some studies mentioned above (e.g., Knight, 2000), we
considered a system of uncoupled elements. Even though the efficient
allocation of receptive fields is possible without cell communication,
efficiency of this system could be improved by having cells interact.
On the one hand, receptive fields themselves result from computations

both within individual neurons (Jia, Rochefort, Chen, & Konnerth,
2010; London & Häusser, 2005; Segev & London, 2002) and within
neural circuits (Bishop & Nasuto, 1999; Laughlin & Sejnowski,
2003). On the other hand, cell assemblies afford more precise and
expeditious estimation of sensory uncertainties than individual cells
(Johnson, 2004; Knill & Pouget, 2004).

Future work should investigate effects of cell coupling on self-
organization and optimization of sensory systems, in particular the
additional degrees of flexibility that cell communication is expected to
provide. For example, having cells with similar tuning characteristics
inhibit one another will help the system to “even out” the distribution
of receptive fields, thus preventing drain of resources from some less
common but useful stimuli. In contrast, having cells with different
tuning characteristics excite one another will expedite convergence to
system’s optimal state: a behavior known as “swarm optimization”
(Kennedy & Eberhart, 1995; Pratt & Sumpter, 2006).
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Appendix A

Details of Numerical Simulations

Stimuli

Unless stated otherwise, we used natural stimuli. The spatial and
temporal amplitude spectra of natural stimuli followed a power
law (function 1/f; Dong & Atick, 1995; Dan, Dong, & Reid, 1996).
Stimuli were obtained using two methods: by extracting a single
row of pixels from a movie of a natural scene or by generating a
random stimulus for which the spectral amplitudes followed func-
tion 1/f and phases were drawn from a uniform distribution on
interval [0, 2�). Stimuli from both sources were then preprocessed.
At low frequencies, stimulus spectra were flattened, simulating the
output of retina and lateral geniculate nucleus (Barlow, 1969; Dan
et al., 1996). Locations x and frequencies f of the stimuli that
triggered input-cell responses (Equations 4 and 8) were determined
by computing local maxima in the outputs of the convolution of
stimuli with receptive field functions on x and f. Locations and
frequencies obtained this way had near uniform distributions. To
accelerate large-scale simulations, stimulus parameters (x, f) were
drawn from uniform distribution on intervals that fully covered the
largest receptive field of the input layer.

Stimulus speed was defined as ratio � � ft / fs (Kelly, 1979).
(Sets of pairs of ft and fs that correspond to the same ratio � form
constant-speed lines, as explained in Figure 1A.) To derive am-
plitude spectra across speeds we integrated spatiotemporal spectra
of the stimulus along the constant-speed lines. The distribution of
amplitudes followed the 1/f function. Assuming the whitening of

low frequencies (as in the domains of space and time), we obtained
a uniform distribution of speeds.

Simulations of Idealized Neurons

Measurement in one dimension. The results summarized in
Figures 2–5 were obtained using a basic neural circuit that con-
sisted of two input cells and one readout cell. Input receptive field
sizes were Si � {1.0, 2.0}. On every iteration, random stimuli  �
(x, f), each characterized by location x and frequency content f,
were sampled from a uniform distribution. Every time, we com-
puted 10 cell responses yzi (Equation 9) while the input-readout
weights were kept constant. The readout cell generated a spike
when the weighted sum of its inputs yr � �i wiyzi exceeded
threshold �. Threshold � was equal to the expected value of the
weighted sum of input responses yr during K � 10 most recent
stimulations (Equation 6).

Weight wi of ith neuron was incremented by �wi � εci where
ε � 0.1 and where

ci �
�k yzi

(k)yr
(k)

�k yzi
(k) (A1)

was the coincidence rate expressed as average of readout spikes
(out of K � 10 most recent spikes) weighted by coincident re-
sponses of ith input cell. The weight decayed with rate � � 0.2.

(Appendices continue)
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Effective sizes of readout receptive field

Sr �
�i wiSi

�i wi

(A2)

were collected from Ne � 20,000 iterations in total. The normal-
ized histogram of readout receptive field sizes is plotted in Figure
4B. Values Sr were divided to NB � 31 bins of equal size on range
[Sr

� � 0.05, Sr
� � 0.05]. Changes of readout size �Sr � |Sr(j � 1) �

Sr(j)| were recorded separately for each bin. The average (ex-
pected) value of changes of receptive field size is plotted in Figure
2B, only for bins that contained more than 0.5% of entries in the
most populous bin.

Spatiotemporal measurement. The results of simulations de-
scribed in this section are summarized in Figure 6. The same
mechanism of plasticity as in Figure 4 was implemented, now in a
circuit of 25 input cells and one readout cell, all having nested
spatiotemporal receptive fields. Sizes of input receptive fields were
sampled from a grid formed by five speeds � � {1/4, 1/2, 1, 2, 4}

and five temporal sizes T � {1/4, �1 ⁄2, 1 ⁄2, �2, 1}. Input-
readout weights wi were initialized such that original receptive
field size was X0 � (0.5, 0.5). Over the course of Ne � 20,000
epochs of simulation, stimuli were presented to input receptive
fields (100 independently generated random stimuli  � (x, fx, t, ft)
per epoch), and weights wi were updated according to Equation 7.
Coincidence rate ci was estimated over 100 stimulus presentations
as in Equation A1.

Stimulus bias in the basic circuit. Stable-state input-readout
weights depend on stimulus statistics. In Figure A1 we illustrate

this by plotting distributions of input-readout weights for different
distributions of stimulus speeds. For this illustration, we consid-
ered input cells tuned to speed, with weighting functions

�i(vj) � exp �� (vj � vi)
2

2ve
2 �,

where �i is the tuning function of ith input cell, �i is the tuning
speed (i.e., the speed at which the tuning function has the highest
value), and �j is a sample of stimulus speed. In contrast to the
input-cell response function used previously (Equation 9), here the
input response function was

yzi(x, fx) � � yi(x)zi(fx) � (1 � �)wi(vj), (A3)

where � is a constant (0 � � � 1) that determined the strength of
speed tuning.

In Figure A1, spiking activity of three input cells with sizes Si �
{0.5, 1.0, 2.0} encoded the distance of stimulus speed from the
tuning speed of the cell (� � 0.75, Equation A3). Stimulus speed
was sampled from three different distributions of stimulus speed
shown on the bottom of Figure A1 (green curves). The magnitudes
of input-readout weights averaged over 5,000 iterations in each of
the three regimes of stimulation are plotted on top of Figure A1.

Stimulus bias in the generalized circuit. In simulation of
ensemble the effect of speed prevalence on circuit plasticity was
implemented by introducing biases of weights wi

• Conservatism of the size of receptive fields was implemented
by giving advantage to the original input-readout weights at which
readout receptive field size was X0 � (T0, S0) � (0.5, 0.5):

v2 v3v1

0.6

1

0

v2 v3v1 v2 v3v1

A B C

0
p(v)

ω i

Input-readout
synaptic weights

Input cell
speed tuning

Stimulus speed
distribution

Figure A1. Illustration of stimulus bias in the basic circuit. Panels A–C illustrate outcomes of simulations of
the basic circuit using three different distributions of stimulus speed. The stimulus distributions are represented
by green curves in the bottom panels, with the mean stimulus speed increasing from A to C. Middle panels (�i)
illustrate tuning functions (in red) for three input cells centered on tuning speeds �i, i � {1, 2, 3}. In the top
panels, the blue boxplots represent input-readout weights wi from over 5,000 iterations, using stimuli sampled
from the speed distributions in the corresponding bottom panels. The top panels also contain plots (in black) of
input-readout weights observed for stimuli sampled from a uniform distribution of speed (the same for all top
panels). (In the boxplots, the boxes mark the 25th and 75th percentiles, and the whiskers mark the 10th and 90th
percentiles, of the distribution of weights.)

(Appendices continue)
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�wi � �cwi exp���Ti � T0�2

2T0
2 �

�Si � S0�2

2S0
2 �. (A4)

• Conservatism of the speed preference was implemented by
giving advantage to those parameters of receptive fields at which
spatiotemporal size ratio �i � Si/Ti was similar to the prevalent
(mean) speed of stimulation �e:

�wi � �v wi exp���vi � ve�2

2ve
2 �. (A5)

Constants (�c, ��) are nonnegative constants that control the
degree of weight modulation. Their values for computation of
conservative tendencies in the two cases were (0.05, 0) for Figure
6A, and (0.05, 0.1) for Figures 6B–6D.

Simulations of Poisson Neurons

Responses of input cells were modeled as homogeneous Poisson
processes. Figure A2 is an example of spike sequence from one
such simulation. The normalized mean firing rate of an input cell
was:

ri � exp(�0.5(x ⁄ Si)
2),

where x is the distance of the stimulus from the center of the
receptive field. For a cell with maximum firing rate rmax, the
normalized firing rate is ri � ri

�/rmax, where ri
� is the absolute firing

rate, and the probability that n spikes occurred within interval �t
is governed by a Poisson distribution (Equation 1.29 in Dayan &
Abbott, 2005). Coincidence rate ci was computed using Equation
A1 for binary input cell responses yzi � {0, 1} and K � 40 (which

includes the entire range of Figure A2). Here the coincidence rate
expresses the fraction of ith input-cell spikes that coincided with
readout spikes.

In the simulation for Figure A2, input-readout weights were
fixed at w1 � 0.3 and w2 � 0.7 (for the input cells with sizes S1 �
S2) and readout threshold was � � 1.1 � max{wi}, ensuring that
activation of one input cell was unlikely to trigger a readout spike
in this illustration. This illustration makes it clear that readout
spikes were triggered in two cases: when both input cells fired and
when the input cell with the larger weight (here w2 � 0.7) fired
because of a slow decay of activity following a previous excitation.

Coincidence rate ci is low for input cells that fire when other
input cells do not. Low ci is likely when a stimulus falls on the part
of input receptive field that does not overlap with receptive fields
of other input cells. The probability of such “isolated” spikes is
high in circuits with large variability of input receptive field sizes,
where small receptive fields overlap with only small parts of larger
receptive fields. As a result, there is a monotonic relationship
between receptive field size and input-readout weight: the smaller
the input receptive field the larger its weight, supporting the notion
that the circuit behaves as if it minimizes the uncertainty of
measurement of location.

Size Fluctuation

Figure 7A is an illustration of the update rule of Equation 11.
The contour plot in the background represents some uncertainty
function of the form of Equation 3. Initial parameters of 1,000
receptive fields were set to X � (0, 0). R was sampled from an
isotropic normal distribution �(0, I), where I is an identity matrix.

Time (s)

Input cell  

Readout cell 

Input cell  

0 0.1 0.2

increase
decrease

synaptic weight

Figure A2. Illustration of simulated spiking activity in input and readout cells. Input responses were modeled
using a homogeneous Poisson spike generator. Blue and green marks indicate the timing of spikes in input cells

and within 200 ms after stimulus presentation. In this illustration, the normalized response rates of input
cells are r1 � 0.6 and r2 � 0.9 and the maximal firing rate rmax is 200. Red bars mark the timing of readout cell
spikes. The gray regions enclose input spikes coincident with readout spikes. Since cell tended to respond
when cell responded, thus activating the readout cell, many spikes of cell were followed by readout spikes,
but spikes of cell often elicited no readout spikes. The effect of spike coincidence on input-readout weights
is represented by the circles in the top two rows. The filled and unfilled circles stand, respectively, for increments
and decrements of weight. Coincidence rates (Equation A1) for this illustration are c1 � 12/18 � 0.67 and c2 �
14/26 � 0.54.

(Appendices continue)
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Figures 7B–7D illustrate the conservation of tuning to speed.
Receptive field fluctuations were confined to elliptic regions
(Equation B6), the major axes of which were aligned with the
locally estimated speeds (v�i �	0.1, 1.0, 10.0
, respectively, in Fig-
ures 7B, 7C, and 7D). The elliptic regions were centered at X0 �
(0, 0) and were defined as

�X0
� 	X � �2�XTA(v�i)X � 1
, (A6)

where A(·) is an operator that controls the regions’ shapes and
orientations (Appendix B). On this definition, domains �X0

change
their orientations in response to changes in statistics of stimulation.

Pathlines. The pathlines in Figure 8 have a simple analytic
form derived in Appendix C (section Derivation of pathlines). For
example, if v�i�X� is the expected speed of stimulation, �e, then the
pathline through X0 � (T0, S0) is

S � veT � C0,

for C0 � S0 � �eT0 (Equation C2). The red curve in Figure 8B
represents such a pathline for one instance of X0.

Kelly Function

Simulated Kelly function. Measurement uncertainty was as
in Equation 3, with �i�	X̃,T̃,X,T
 � {0.012, 0.0013, 1.3234, 0.3}.
Initial locations X0 were randomized to cover the parameter space
uniformly. Receptive fields were first distributed across speeds
according to probability distribution p() � 1/U(i) where i are
locations of minimal measurement uncertainty on cell pathlines.
Expected speed v�i�X� � 0.353 (Equation B5) was the same for all
receptive fields, thus implementing the extreme case of all the cells
having very large receptive fields, i.e., integrating speed on the
entire open interval � � (0, �). Fluctuations of receptive field
parameters T and S were according to Equation 11 with 	 � 0.1
and Rk � (0, 1). Fluctuations were constrained to bands in the
parameter space described in section Model of Global Dynamics,
within boundaries centered on initial locations X0 such that
�X � X0�

2 � 0.5X0.
Because of the initial randomization of cell locations, some cells

could not reach optimal locations by fluctuations alone: their
fluctuation boundaries �X0

(Equation 12) did not contain minima
of the uncertainty function. Such cells could still reach optimal
locations, since X0 of all cells could change, although on a slow
scale. Location X0 were updated to an estimate of local tendency

within the previous fluctuation boundary after each N iterations
(here N � 50). (The local tendencies were computed as in Figure
7, except the steps of X were normalized by the amplitude of
uncertainty change within �X0

. The normalization insured that
estimates of local tendency were comparable after equal numbers
of iterations at different locations in the parameter space.) Only in
the receptive fields removed from the minimum of uncertainty, the
resulting changes of X0 were significant because there the differ-
ences between X0 and local tendencies were large. The impreci-
sion (uncertainty) in estimation of local tendencies prevented the
cells from lingering at the optimal locations, which is why the cells
did not all converge at the minima of uncertainty. Changes of �X0
reached stable states after several thousands of iterations, whereas
local tendencies (within �X0

) reached stable states after tens of
iterations.

Human Kelly function (Figure 1A). The contour plot of the
human spatiotemporal sensitivity function (Figure 1A and Equa-
tion 8 in Kelly, 1979) is rendered using a color map normalized by
maximal sensitivity. The function was derived in the frequency
domain (Kelly, 1979), here transformed to space-time using the
fact that motion detectors are tuned to quarter-cycle displacement
of moving stimuli (Gepshtein et al., 2007; Heess & Bair, 2010;
Nakayama, 1985; Nakayama & Silverman, 1985; Watson, 1990).
Figure 1B: The plot of sensitivity obtained by simulations de-
scribed in section Simulated Kelly function.

Computations of density and sensitivity. Receptive field
density was evaluated by linear superposition of two-dimensional
Gaussian functions

e�
1
2�T � Ti

kTi
�2

�
1
2�S � Si

kSi
�2

,

where (Ti, Si) are receptive field parameters. The linear bandwidth
parameter k � 0.2 was selected to obtain a smooth unimodal
distribution of density (M. C. Jones, Marron, & Sheather, 1996).

The sensitivity was calculated by linear superposition of indi-
vidual cell sensitivities (Kelly, 1975, 1979). The tuning of indi-
vidual cells to spatial and temporal frequencies was assumed to
have profile

� e

f0
�2

f 2e�2 f
f0
,

where f0 is the tuning frequency (Kelly, 1975). The sensitivity
function was computed in the frequency domain and transformed
to space-time as in Figure 1.

(Appendices continue)
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Appendix B

Receptive Field Dynamics

We model systems of motion-sensitive neurons with receptive
fields characterized by two parameters: spatial extent S and tem-
poral extent T. We view these parameters as random processes that
depend on the uncertainty of measurement by receptive fields:

�X � �U(X)R, (B1)

where

• �X � (�T, �S) is a change of parameters X � (T, S),
• U (X) is uncertainty of measurement,
• R is sampled from a bivariate normal random process,

(0, 1),
• 	 is a positive constant that represents the rate with which

measurement uncertainty U affects parameter fluctuations.

In the following we derive an analytical prediction of the stable
state of the described system.

Fluctuations in One Dimension

For didactic reasons, we first consider fluctuations on one di-
mension, X � �. We rewrite Equation B1 as

Xk�1 � Xk � �U(Xk)Rk, (B2)

where Rk is a random process with zero mean. Receptive field size
X is constrained to some range �X0

: [xmin xmax], where xmin and
xmax are reflecting boundaries (Gardiner, 1996). For sufficiently
small 	, the fluctuations are approximated by a continuous-time
stochastic model:

dX � U(X)dW,

where dW is an increment of a Wiener process W(t) (Gardiner,
1996). By this process, X gets distributed according to the proba-
bility density function p(X, t), a solution of this Fokker-Plank
equation:

p

t
�

1

2

2

X2U2(X)p(X, t),

subject to boundary conditions. The stationary solution of this
equation is

ps(X) � lim
t¡�

p(X, t) �
C

U2(X)
, (B3)

where C is such that

�xmin

xmax ps(X)dX � 1 (B4)

(Gardiner, 1996, p. 124). The maximum of this solution is obtained
at the same X as the minimum of U(X).

Fluctuations in Two Dimensions

Let receptive field parameters T and S vary according to Equa-
tion B1. Let the random process be constrained to regions �X0

in
receptive field parameter space (T, S) (Equation 12), and let these
regions have elliptical shapes whose centers are X0 and whose
main diagonals are aligned with the locally expected speed of
stimulation (Equation B5):

v�(X) �
�0

�
�(v, X) p(v)v dv

�0

�
�(v, X) p(v)dv

. (B5)

Speed v��X� represents an estimate of the expected stimulus speed.
Sensor speed preference, �(�, X), is biased by probability p(�).
The elliptic regions are then defined as

�X0
� 	X � �2� (X � X0)

T A(X � X0) � 1
,

A � M�1 ⁄ a2 0

0 1 ⁄ b2 � M�1,

M � �cos(�) �sin(�)

sin(�) cos(�) �, � � tan�1(v�(X)),

(B6)

where a, b, a2 � b2 are the parameters of size and eccentricity of
�X0

. (On this definition, domains �X0
change their orientations as

the stimulation changes).
For small 	 and X � [X1, X2], the random process is approxi-

mated by a continuous-time stochastic model:

dX1 � U(X)dW1

dX2 � U(X)dW2,

where dW1 and dW2 are increments of Wiener processes W1(t) and
W2(t). Now the Fokker-Plank equation is

p

t
�

1

2� 2

X1
2 �

2

X2
2�U2(X)p(X, t).

The stationary solution of this equation with reflecting boundary is
unique. It is

ps(X) �
C

U2(X)
, (B7)

(Appendices continue)
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where C is such that

��X0

C

U2(X)
dX � 1.

To see that, substitute U2(X)ps(X) by z(X). Function z(X) must
satisfy

� 2

X1
2 �

2

X2
2� z(X) � 0,

z

X1
n1(X) �

z

X2
n2 (X) � 0,

where vector [n1(X), n2(X)] is normal to the fluctuation boundary
�X0

. The second equation just above is a consequence of the
reflecting boundary condition (Gardiner, 1996, p. 146). From the
Ostrogradsky-Gauss theorem it follows that the only general so-
lution of the latter equations is z(X) � C (e.g., p. 99, b–c in Duff,
1956), where C is a constant uniquely determined by Equation
B7.1

Boundary Conditions

We derived the steady states of the stochastic processes by
assuming a reflecting boundary condition. For consistency, we

made the same assumption in the simulations of receptive field
fluctuation. The “reflective boundary” implements a conservative
trend of receptive field fluctuation. When a stochastic update
brought receptive field parameters outside of the boundary: X2 �

X1 � �X, where X2 � 
X0, new parameters X̃2 were computed,
as if the trajectory of receptive field change was reflected from the
boundary �X0

at point X�. This point was the intersection of line
X1X2 and the boundary, such that

X̃2 � X2 � 2n((X2 � X�) · n), (B10)

where n is the normal to the boundary at X�.
The choice of reflective boundary allowed us to simplify the

analysis (Appendix C). Discrepancies between predictions of the
analysis and results of simulations were most pronounced where
the probability of “overstepping” the boundary was significant,
i.e., at high fluctuation rates 	 (Equation B1). For small 	, the
effects of boundary condition on steady-state distribution of re-
ceptive field parameters was negligible.

1 Suppose that b is a differentiable function in �2, n is a unit normal to
boundary �
 of 
, and

� · b �


X1
b(X1, X2) �



X2
b(X1, X2).

According to the Ostrogradsky-Gauss theorem, the following identity must hold:

��
� · b d� � ��

div(b) d� � ��
b · n d  �. B8

Let z and � be any two functions each differentiable at least twice, and let

� �
2

X1
2 �

2

X2
2 .

Then

v�z � � z · � v � � · (v � z). B9

From Equations B8 and B9 it follows that

��
v[�z]d����

�v · � zd�

E(z,v)

� ��
� · (v � z)d  � � ��

v�v · n d  �.

Taking into account the reflecting boundary condition, pz·n � 0, and
noticing that if z is a stationary solution then �z � 0, we conclude that

E(z, z) � ��
��z�

2d� � 0.

Thus, given that function z is differentiable at least twice and that domain

 is bounded, we conclude that pz � 0 in 
. Hence, z must be a constant.

(Appendices continue)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

X

U
(X

),
 p

(X
)

Figure B1. Steady-state parameter distributions. The red line is a predic-
tion of receptive field parameter distribution (Equation B3) in a system
with receptive field fluctuations constrained by a reflective boundary. X
stands for receptive field size, here normalized to interval [–1, 1]. The
uncertainty function U(X) is represented by the green curve. The four black
curves are results of computational experiments with different fluctuation
rates 	. The curves are histograms of parameter distributions, p(X), each
after 1,000 iterations.
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The effect of fluctuation rate 	 on convergence of receptive
field parameters is illustrated in Figure B1, in one dimension.
The analytic prediction of steady state and results of computa-
tional experiments are shown for a system with a simplified
uncertainty function, U(X) � X2 � 0.1, using the update rule of
Equation B2. The prediction is represented by the red line,

computed as in Equation B3. (Here, the condition of Equation
B4 is satisfied for C � 8.) Results of computational experi-
ments are represented by the black curves, for four values of 	,
having all the cells initialized to the same X(t � 0) � 0.0 in
every case. Results of experiments agree with the analytic
prediction when 	 is small.

Appendix C

Optimal Conditions

Derivation of Pathlines

Changes of receptive fields with collinear local tendencies form
a “pathline.” The shapes of pathlines can be derived as follows.
First suppose, for simplicity, that the regions of fluctuation �X0

are
very narrow, so they can be approximated by line segments cen-
tered on X0 and aligned with v�i�X0�. Let the segments be spaced
such that endpoints of one segment are exactly at the endpoints of
the neighboring segments. Let (X) be the union of segments �X0
forming a continuous curve through X.

Then, pathline (X) through X is a set of points containing all
(X) as subsets. If X is fixed, the slope of pathline (X) at point

X is v�i�X�. When the segments are sufficiently short, it follows
from the Peano existence theorem and from the theorem on con-
tinuous dependence of solutions on initial conditions and param-
eters (Petrovski, 1966), that the curve through X will be approx-
imated by solution of this differential equation:

dX2

dX1
� v�i(X). (C1)

Generally, solutions of Equation C1 are not unique. They be-
come unique, however, when function v�i�X� is continuous in X1, X2

and Lipschitz at X2 such that

�v�i(X) � v�i(X
′)� � L�X2 � X2

′�,

where X= � (X1, X2=) (Osgood’s theorem; Petrovski, 1966).
For example, if v�i�X� is the expected speed of stimulation

ve � �0

�
vp(v)dv,

then pathlines (X0) at X0 � (X1,0, X2,0) are

X2 � veX1 � C0, (C2)

for C0 � X2,0 � veX1,0.
Now suppose that regions �X0

are not confined to segments, but
they constitute extended regions in (T, S). Then solutions of
Equation C2 change from curves to bands centered on the curves.
An example of such a band is illustrated using red markers in
Figure 8A, which corresponds to the red curve in Figure 8B.

Minima of Uncertainty on Pathlines

On every pathline there exists a point where composite mea-
surement uncertainty:

Uc(T, S) � �SS �
�S

S
� �TT �

�T

T

(Equation 9 in the main text) is the smallest, that is, where the
following identity holds:

Uc

S
dS �

Uc

T
dT � 0. (C3)

After sufficiently long time (i.e., in the system’s steady state),
the stochastic fluctuations of tuning parameters are expected to
preferentially bring cell tuning to such regions of (T, S) where
Equation C3 is satisfied. We find such conditions by solving
Equation C3 under the “pathline” constraint of Equation C2, which
we rewrite as

S � veT � C,

where ve is the expected speed of stimulation and C � S0 � veT0

is a parameter approximately shared by a group of cells. Within
each such group, cell parameters vary as if cell representations in
space (T, S) moved along a pathline (or within a band of pathlines,
the band defined by a small range of C). Evidently, the most likely
values of S and T within such a group are

(T, S) � arg min
T1S1: S1�veT1�C

Uc(T1, S1),

because the likelihood that a cell has some tuning (T�, S�) is
inversely proportional to Uc(T

�, S�). Since uncertainty function Uc

is unimodal ��S, �S, �T, �T � 0�, on any line S � veT � C there is
a minimum which we find by taking into account that ve � dS/dT:

Uc

S
ve �

Uc

T
� 0. (C4)

Solving Equation C4 for S and T yields

S �� ve�ST
2

(�Sve � �T)T2 � �T
. (C5)

Equation C5 describes a set of conditions in (T, S) that has a
hyperbolic shape in both linear and logarithmic coordinates. Equa-
tion C5 is identical to the equation that describes the optimal
conditions of motion measurement in Gepshtein et al. (2007).
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