Inside Salk; Salk Insitute
Home > News & Press > InsideSalk > 08|10 Issue > How Light Receptors Get Their Message Across

How Light Receptors Get Their Message Across

Light Receptors

Plants without a functional HMR gene (shown on the right) are unable to respond to light. They fail to produce chlorophyll and grow into spindly albino seedlings that die young. Phytochrome nuclear bodies, which contain activated phytochrome and HEMERA are shown in the background (blue dots).

Image courtesy of Dr. Meng Chen, Duke University

A team of researchers from the Salk Institute and Duke University have identified the courier that gives the signal to revamp a plant's gene expression pattern after photoreceptors have been activated by light. Their findings, which are published in the June 25 issue of Cell, bring scientists closer to being able to harness plants' phenotypic plasticity to help boost agricultural yields and manage weeds under challenging growing conditions.

"Light is probably the most important environmental cue for a plant," says Howard Hughes Medical Institute investigator Joanne Chory, professor and director of the Plant Molecular and Cellular Biology Laboratory. "Understanding how light signaling triggers morphological changes in the plant will have a really big impact on every facet of plant biology." Because plants are so reliant on light, they have evolved a number of different photoreceptors that are defined by the color of light they absorb. For example, photoreceptors absorbing in the red/ far-red spectral range, also known as phytochromes, help sense the presence of other plants in their neighborhood by detecting changes in the color of light.

Other studies had shown that light directly regulates the relocation of phytochrome A (PHYA) and phytochrome B (PHYB) from the cytoplasm to the nucleus, where they congregate in distinct foci that are commonly referred to as phytochrome nuclear bodies. Sitting at the microscope for hundreds of hours allowed first author Meng Chen to identify a new gene based on his observation that PHYB could not be found in large nuclear bodies. When HEMERA was missing, plants were unable to respond to light, Chen explains, and grew into spindly, albino seedlings that died before they could make flowers.

Chen and his collaborators then found that in HEMERA mutants, key proteins that must be degraded by cells responding to light were still present, thereby making the seedling believe it was still in the dark. Digging deeper, they found striking structural similarities between HEMERA and the yeast protein RAD23, whose job it is to shuttle proteins flagged for destruction to the cellular junkyard. Thus, these nuclear bodies appear to be sites where key regulatory proteins go when they need to be removed from cells.

But Chen discovered that HEMERA does something else: It also slips into chloroplasts, small compartments that contain chlorophyll and are in charge of photosynthesis, which could explain the pale appearance of hemera mutants.

Although chloroplasts contain their own tiny genome, most proteins necessary for chloroplast maturation are encoded in the nucleus and need to be directed to their final destination. In order to ensure proper chloroplast differentiation, gene expression in the nucleus needs to be coordinated with gene expression in the chloroplast.

"A protein that travels to both organelles could serve as a simple yet elegant solution to ensure coordinated gene activity in both locales," says Chory, holder of the Howard H. and Maryam R. Newman Chair. "Although we do not know what HEMERA is doing in the chloroplast, its presence in both the nucleus and chloroplast would ensure that the seedling has a rapid and appropriate response to light when it emerges from the soil."