Salk Institute
Helmsley Center for Genomic Medicine
Reuben J. Shaw

Reuben J. Shaw

Molecular and Cell Biology Laboratory
Howard Hughes Medical Institute Early Career Scientist

Reuben Shaw, professor in the Molecular and Cell Biology Laboratory and the Dulbecco Laboratory for Cancer Research, studies signal transduction pathways that underlie the development of cancer as well as type 2 diabetes.

Our work centers around a human tumor suppressor named LKB1. LKB1 is mutationally inactivated in the familial cancer disease Peutz-Jegher Syndrome as well as in a large percentage of sporadic lung adenocarcinomas. Interestingly, LKB1 encodes a threonine kinase that serves to activate a number of downstream kinases, including the AMP-activated protein kinase (AMPK), which is a critical regulator of metabolism, and the par-1/MARK family of kinases that regulate cell polarity.

Using a combination of proteomic and bioinformatics approaches, we identified AMPK as a direct substrate of LKB1. AMPK is a well known highly conserved regulator of cell metabolism that is activated under conditions of energy stress. We propose that the LKB1-dependent activation of AMPK in response to these stress stimuli may act as a low energy checkpoint in the cell. This unexpected connection between a well-known regulator of cellular metabolism and a tumor suppressor gene led to two immediate questions: Does AMPK have a role in tumor suppression and conversely, does the LKB1 tumor suppressor have a role in metabolic control in critical tissues in mammals? We have found that indeed both are true and that through the phosphorylation of specific targets by AMPK, these wide effects on physiology are regulated.

One way that LKB1 and AMPK regulate tumorigenesis is through regulation of the mTOR kinase, a conserved integrator of nutrient and growth factor signaling. We found that AMPK directly phosphorylates the TSC2 tumor suppressor and activates it to inhibit mTOR signaling. Consistent with this observation from cell culture, tumors lacking LKB1 were found to contain elevated levels of mTOR compared to surrounding epithelium. These findings culminated in the observation that three different human hamartoma syndromes, involving loss of TSC1/2, PTEN, and LKB1, all share a common biochemical underpinning: hyperactivation of mTOR signaling. We also generated a tissue-specific knockout of LKB1 in liver and also observed dramatic elevations of mTOR signaling in this context.

We chose to knockout LKB1 in liver as liver is known to be a tissue where AMPK activity is thought to be critical. Indeed, we found that loss of LKB1 led to a complete loss of AMPK activation and severe diabetes-like phenotypes in in these mice. We found that both gluconeogenic and lipogenic gene expression were upregulated in the livers of these mice, due in part to the loss of phosphorylation of a critical transcriptional coactivator termed TORC2 by AMPK and related kinases in the absence of LKB1. Finally we showed that metformin, one of the most widely prescribed type 2 diabetes therapeutics in the world, requires LKB1/AMPK signaling in the liver in order to exert its therapeutic benefit.

Future studies in our lab will focus on further elucidating these critical signaling pathways at this emerging interface between cancer and diabetes. We will employ a variety of biochemical, cell-biological, and genetic mouse models to dissect these biological processes. In addition, we will examine how existing diabetic therapeutics may be useful in the treatment of tumors with defined genetic lesions.


  • BS Biology, Cornell University, Ithaca, NY
  • PhD, Biology, Massachusetts Institute of Technology, Cambridge, MA
  • Postdoctoral Fellow, Harvard Medical School, Boston, MA

Awards and Honors

  • Howard Hughes Medical Institute Early Career Scientist Award (2009-2015)
  • Hearst Assistant Professorship Chair (2009-2012)
  • American Diabetes Association Junior Faculty Award (2008-2011)
  • American Cancer Society Research Scholar (2007-2011)
  • V Scholar for Cancer Research (2006-2007)

Get Involved

Sign up for our email newsletter

Fill out my online form.
Salk Institute for Biological Studies
Street: 10010 N Torrey Pines Rd
City: La Jolla, CA 92037
Phone: 858.453.4100
Charity Navigator Rating
  • Salk Twitter
  • Salk LinkedIn
  • Salk Facebook
  • Salk Instagram
  • Salk Google+
  • Salk YouTube
  • Salk RSS Feed
© Copyright 2015 Salk Institute for Biological Studies | Privacy Policy About Scientists & Research News & Media Events Support