Salk Institute
Waitt Advanced Biophotonics Center
Björn F. Lillemeier

Björn F. Lillemeier

Assistant Professor
Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis
Waitt Advanced Biophotonics Center
Helen McLoraine Developmental Chair


One of the central challenges in biology is to elucidate how microenvironments modulate molecular mechanisms and thus global cellular function. The Lillemeier lab studies signal transduction in the plasma membrane of T lymphocytes (T cells) upon their activation by Antigen Presenting Cells (APCs). Major rearrangements of signaling molecules take place during this event, which is most dramatically seen in the formation of signaling microclusters and the immunological synapse (see movie). The lab uses cutting edge super-resolution and dynamic fluorescence microscopy techniques (e.g. PALM and FCCS) in combination with traditional biochemical and molecular biological approaches to study the molecular patterns that regulate and are required for T cell activation and function.

We have found a new type of plasma membrane domains, termed protein islands, and the specific segregation of all membrane-associated proteins within them. These findings inspire a new and unsuspected role for the plasma membrane in the spatio-temporal regulation of T cell activation and membrane biology in general. Specifically, we found that signaling cascades are prearranged into 'building blocks', through the localization of signaling molecule subsets within specific protein islands. Redistribution of these protein islands in response to stimuli can lead to either concatenation and assembly of signal transduction pathways or their dissociation and disassembly. These rearrangements are not diffusion limited but active and directed through cytoskeletal forces and pathway-specific protein-protein interactions.

We welcome students and postdocs to join our lab. For more information please contact Björn Lillemeier.

Movie: A primary T cell becomes activated on a glass supported lipid bilayer containing its natural ligands. T cell receptor (TCR) molecules, labeled with enhanced green fluorescent protein (eGFP), form microclusters at the entire the contact site between T cell and bilayer. TCR microclusters are transported towards the center of the contact site in an actin dependent fashion and form the center of an immunological synapse. The movie was acquired in total internal reflection (TIRF) mode to eliminate intracellular fluorescence.


Education

  • Undergraduate degree in Biochemistry, Free University Berlin (Germany) and Cancer Research UK (formerly Imperial Cancer Research Fund, U.K.)
  • Ph.D., Biochemistry, Cancer Research UK (formerly Imperial Cancer Research Fund) and University College London (U.K.)
  • Postdoctoral Fellow, Stanford University (U.S.A.)

Awards and Honors

  • National Institutes of Health (NIH) Director's New Innovator Award (2012)
  • Rudolph and Sletten Developmental Chair (2010-2013)
  • Human Frontier Science Program Fellowship (2002-2005)
  • Böhringer Ingelheim Fonds Scholarship (1997-2000)
  • Dr. Carl Duisberg Stiftung Scholarship (1996)

Selected Publications

  • Klammt C., Lillemeier B.F. (2012). How membrane structures control T cell signaling. Frontiers in Immunology. 3: 291
  • Kasuboski J.M., Sigal Y.J., Joens M.S., Lillemeier B.F., and Fitzpatrick J.A.J. (2012). Superresolution microscopy: A comparative treatment. Current Protocols in Cytometry. 2.17.1–2.17.24.
  • Fitzpatrick J.A., Lillemeier B.F. (2011). Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ. Current Opinion in Structural Biology. 21(5):650-60
  • Lillemeier B.F. and Davis M.M. (2011). Probing the plasma membrane structure of immune cells through the analysis of membrane sheets by electron microscopy. Methods in Molecular Biology. 748:169-82.
  • Kuhns M.S., Girvin A.T., Klein L.O., Chen R., Jensen K.D., Newell E.W., Huppa J.B., Lillemeier B.F., Huse M., Chien Y.H., Garcia K.C., Davis M.M. (2010). Evidence for a functional sidedness to the alpha-beta-TCR. Proceedings National Academy of Sciences USA 107 (11):5094-9.
  • Huppa J.B., Axmann M., Mörtelmaier M.A., Lillemeier B.F., Newell E.W., Brameshuber M., Klein L.O., Schütz G.J., Davis M.M. (2010). Measuring the affinity and kinetics of T cell receptor binding in situ. Nature. 463 pp.963-967.
  • Lillemeier B.F., Mörtelmaier M.A., Forstner M.B., Huppa J.B., Groves J.T., Davis M.M. (2010). TCR and LAT are expressed on separate protein islands onT cell membranes and concatenate during activation. Nature Immunology. 11(1):90-96
  • Davis M.M., Krogsgaard M., Huse M., Huppa J., Lillemeier B.F., Li Q.J. (2007). T cells as a self-referential, sensory organ. Annual Review of Immunology. 25:681-95
  • Lillemeier B.F., Pfeiffer J.R., Surviladze Z., Wilson B.S., Davis M.M. (2006). Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proceedings National Academy of Sciences USA. 103(50):18992-7
  • Huse M., Lillemeier B.F., Kuhns M.S., Chen D.S., Davis M.M. (2006). T cells use two directionally distinct pathways for cytokine secretion. Nature Immunology. 7(3):247-55.
  • Kerr I.M., Costa-Pereira A.P., Lillemeier B.F., Strobl B. (2003). Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Letters. 546(1):1-5
  • Hilkens CM, Is'harc H, Lillemeier BF, Strobl B, Bates PA, Behrmann I, Kerr IM. (2001). A region encompassing the FERM domain of Jak1 is necessary for binding to the cytokine receptor gp130. FEBS Letters Sep 7;505(1):87-91.
  • Lillemeier B.F., Köster M., Kerr I.M. (2001). STAT1 from the cell membrane to the DNA. EMBO Journal. 20(10):2508-17
  • van Ham M., van Lith M., Lillemeier B.F., Tjin E., Gruneberg U., Rahman D., Pastoors L., van Meijgaarden K., Roucard C., Trowsdale J., Ottenhoff T., Pappin D., Neefjes J. (2000). Modulation of the major histocompatibility complex class II-associated peptide repertoire by human histocompatibility leukocyte antigen (HLA)-DO. Journal of Experimental Medicine. 191(7):1127-36

Get Involved

Sign up for our email newsletter

Fill out my online form.
Contact
Salk Institute for Biological Studies
Street: 10010 N Torrey Pines Rd
City: La Jolla, CA 92037
Email: webrequest@salk.edu
Phone: 858.453.4100
Charity Navigator Rating
  • Salk Twitter
  • Salk LinkedIn
  • Salk Facebook
  • Salk Instagram
  • Salk Google+
  • Salk YouTube
  • Salk RSS Feed
© Copyright 2014 Salk Institute for Biological Studies About Scientists & Research News & Media Events Support